
Dual-Primal Graph Convolutional Networks

Federico Monti1, Oleksandr Shchur2, Aleksandar Bojchevski2, Or Litany4,
Stephan Günnemann2, and Michael Bronstein1,3

1 USI Lugano
2 Technical University of Munich

3 Imperial College London
4 Facebook AI Research

Abstract. In recent years, there has been a surge of interest in developing
deep learning methods for non-Euclidean structured data such as graphs.
In this paper, we propose Dual-Primal Graph CNN, a graph convolutional
architecture that alternates convolution-like operations on the graph and
its dual. Our approach allows to learn both vertex- and edge features
and generalizes the previous graph attention (GAT) model. We provide
extensive experimental validation showing state-of-the-art results on a
variety of tasks tested on established graph benchmarks, including CORA
and Citeseer citation networks as well as MovieLens, Flixter, Douban
and Yahoo Music graph-guided recommender systems.

1 Introduction

Recently, there has been an increasing interest in developing deep learning
architectures for data with non-Euclidean structure, such as graphs or manifolds.
Such methods, known under the name geometric deep learning [6], have been
applied in a variety of applications, from computer graphics, vision [27,5,24,38],
and medicine [33,43] to chemistry [12,13] and high energy physics [17].

One of the drawbacks of graph CNNs described above is that the convolution
operations are only applied to vertex features and the underlying domain is
considered as fixed. In many situations, this can be a major disadvantage, as the
graph can be noisy or only known approximately (e.g. in recommender systems k-
NN graphs are typically computed a priori based on additional meta-information,
which does not necessarily represent the true social relationships existing among
users). Furthermore, while vertex features can be informative, there is no clean
mechanism to take advantage of edge features that are more complex than scalars.

The key contribution of our paper is an extension of the graph attention
mechanism to edges using the dual graph, whose vertices correspond to the
edges of the original graph. The proposed Dual-Primal Graph CNN (DPGCNN)
addresses the aforementioned issues and achieves superior performance on a
broad range of tasks.

2 Monti et al.

2 Graph Convolutional Networks

Definitions. Let G = {V, E ,A} be a given weighted undirected graph with
vertices V = {1, . . . , n}, edges E ⊆ V × V s.t. (i, j) ∈ E iff (j, i) ∈ E , and edge
weights aij = aji ≥ 0 for (i, j) ∈ E and zero otherwise. We denote by Ni
a neighborhood of vertex i; N p

i denotes the p-hop neighborhood. The graph
structure is represented by the n × n symmetric adjacency matrix A = (aij).
We define the normalized graph Laplacian ∆ = I−D−1/2AD−1/2, where D =
diag(

∑
j 6=1 a1j , . . . ,

∑
j 6=n anj) denotes the degree matrix. In the above setting, the

Laplacian is a symmetric matrix admitting an eigendecomposition ∆ = ΦΛΦ>

with orthonormal eigenvectors Φ = (φ>1 , . . . ,φ
>
n) and non-negative eigenvalues

0 = λ1 ≤ λ2 ≤ . . . λn arranged into a diagonal matrix Λ = diag(λ1, . . . , λn).
We are interested in manipulating functions f : V → R defined on the vertices

of the graph, which can be represented as vectors f ∈ Rn. The space of such
functions is a Hilbert space with the standard inner product 〈f ,g〉 = f>g. The
eigenvectors of the Laplacian form an orthonormal basis in the aforementioned
Hilbert space, allowing a Fourier decomposition of the form f = ΦΦ>f , where
f̂ = Φ>f is the graph Fourier transform of f . The Laplacian eigenvectors thus
play the role of the standard Fourier atoms and the corresponding eigenvalues
that of the respective frequencies. Finally, a convolution operation can be defined
in the spectral domain by analogy to the Euclidean case as f ? g = Φ(f̂ · ĝ) =
Φ(Φ>f) · (Φ>g).

Spectral graph CNNs. Bruna et al. [7] exploited the above formulation for
designing graph convolutional neural networks, in which a spectral convolution
operation has the following form:

f ′ = ΦĜΦ>f , (1)

where Ĝ = diag(ĝ1, . . . , ĝn) is a diagonal matrix of spectral multipliers repre-
senting the filter and f ′ is the filter output. Here, for the sake of simplicity, we
assume a scalar input, though like in classical CNNs, the basic spectral convolu-
tion operation (1) can be applied in combination with linear transformations of
input and output features, non-linearities, and pooling layers (implemented as
graph coarsening). Note that this formulation explicitly assumes the graph to be
undirected, since the orthogonal eigendecomposition of the Laplacian requires a
symmetric adjacency matrix.

ChebNet. Defferrard et al. [10] considered the spectral CNN framework with
polynomial filters represented in the Chebyshev basis, τθ(λ) =

∑p
j=0 θjTj(λ),

where Tj(λ) = 2λTj−1(λ)− Tj−2(λ) denotes the Chebyshev polynomial of degree
j, with T1(λ) = λ and T0(λ) = 1. A single filter of this form can be efficiently
computed by applying powers of the graph Laplacian to the feature vector,

f ′ = Φ

p∑
j=0

θjTj(Λ̃)Φ>f =

p∑
j=0

θjTj(∆̃)f , (2)

thus avoiding its eigendecomposition altogether. Here λ̃ is a frequency rescaled in
[−1, 1], ∆̃ = 2λ−1n ∆−I is the rescaled Laplacian with eigenvalues Λ̃ = 2λ−1n Λ−I.

Dual-Primal Graph Convolutional Networks 3

The computational complexity thus drops from O(n2) as in the case of spectral
CNNs to O(|E|), and if the graph is sparsely connected (with maximum degree of
O(1)), to O(n). Furthermore, the graph can now be directed, as the framework
does not rely on explicit eigendecomposition.

Several follow-up works refined and extended this scheme. Kipf and Welling
[22] proposed a simplification of ChebNet (referred to as Graph Convolutional
Network or GCN) by limiting the order of the polynomial to p = 1 and using a
re-normalization of the Laplacian to avoid numerical instability.

Levie et al. [23] replaced the polynomial filter functions by rational functions
based on the complex Cayley transform (CayleyNet), allowing to achieve better
spectral resolution of the filters, especially relevant for graphs with communities.
Monti et al. [32] proposed using graph motifs [29,3] to create anisotropic kernels
(MotifNet). Finally, Monti et al. [31] proposed an extension of ChebNet to multiple
graphs (Multi-Graph CNN or MGCNN) in the context of graph-guided matrix
completion and recommender systems.

Mixture Model Networks (MoNet). Monti et al. [30] proposed a spatial-
domain Graph CNN (MoNet) generalizing the notion of ‘patches’ to graphs. The
neighbors of each vertex i are assigned local pseudo-coordinates uij ∈ Rd, j ∈ Ni.
The analogue of a convolution is then defined as a Gaussian mixture in these
coordinates,

f ′i =

M∑
m=1

wm
∑
j∈Ni

e−(uij−µm)>Σ−1
m (uij−µm)∑

k∈Ni
e−(uik−µm)>Σ−1

m (uik−µm)
fj , (3)

where µ1, . . . ,µM ∈ Rd and Σ1, . . . , ,ΣM ∈ Sd+ are learnable parameters of the
Gaussians. The Gaussians define local weights extracting a local representation
of f around i that generalizes the notion of a ‘patch’; the additional learnable
parameters w1, . . . , wM correspond to filter coefficients in classical convolution.

Graph Attention Networks (GAT). Veličkovic̀ et al. [37] proposed an
attention mechanism for learning the relevance of each neighbor. The convolution
operation with attention has the form:

f ′i =
∑
j∈N 1

i

αijfj , αij =
eη(a([fi, fj]))∑

k∈N 1
i
eη(a([fi, fk]))

(4)

where η denotes the Leaky ReLU, and a([fi, fj]) is some transformation of the
concatenated features at vertices i and j, implemented in [37] as a fully connected
(linear) layer.

Performing this process multiple times with different transformations (multiple
heads) produces filters capable of focusing on different classes of vertices in a
neighborhoods. We note that GAT can be considered as a particular instance of
MoNet (3), where the pseudo-coordinates uij are just the features of the nodes i
and j.

4 Monti et al.

0

1 2

34

0,2

0,3

0,4

0,1

1,2

2,3

Fig. 1. Primal (left) and dual (right) graphs. For clarity, only the ego graph of primal
edge (0, 2) is shown for the dual.

3 Learning on dual/primal graphs

Dual graphs. Let G = (V, E) be a given directed graph, to which we refer as
the primal graph. The dual (also known in graph theory as the line (di)graph or
adjoint graph) of G, denoted by G̃ = (Ṽ = E , Ẽ), is constructed as follows [16]:
each dual vertex (i, j) ∈ Ṽ corresponds to a primal edge (i, j) ∈ E , two dual
vertices (i, j), (i′, j′) ∈ Ṽ are connected by an edge in G̃ if they share direction and
at least an endpoint in G. Figure 1 provides an illustration of this construction
for an undirected graph.

We summarize the properties of dual graphs and refer the reader to [16,15,14]
for additional details. If the primal graph G is connected, so is its dual G̃. The
dual graph has ñ = |Ṽ| = |E| vertices. If G is undirected, the number of dual
edges is |Ẽ | = 1

2

∑n
i=1 d

2
i − |E|, where di denotes the degree of primal vertex i. If

G is directed, the dual contains |Ẽ | =
∑n
i=1 d

in
i d

out
i − |E| edges [1], where din and

dout denote the in- and out-degrees, respectively. The complexity of constructing
the dual graph is O(|E|doutmax), where doutmax = maxi=1,...,n d

out
i is the maximum

vertex out-degree in the primal graph. While the worst-case complexity is O(n3)
for fully-connected graphs, for sparsely-connected graphs encountered in practice
the cost is linear in n.

In a concurrent work, [9] use dual graphs in GNNs for supervised community
detection, which is different from the tasks considered in this paper (classification
& matrix completion).

3.1 Dual-Primal GCNN

We propose a Dual-Primal Graph CNN (DPGCNN) architecture, which alternates
between dual and primal convolutional layers. The dual convolutional layer
applies a GAT on the dual graph to produce features on the edges of the primal
graph. These primal edge features are used in the primal convolutional layer to
compute attention scores for another GAT, producing primal vertex features.
The implementation of both layers are detailed in the following.

Dual convolution. Let F denote the n × q matrix of input primal vertex
features, where each row corresponds to a vertex in the primal graph G. The dual
vertex features (or equivalently, primal edge features) f̃ij = [fi, fj] are constructed

Dual-Primal Graph Convolutional Networks 5

by concatenating the respective primal vertex features (row vectors fi, fj), for
each (i, j) ∈ E . We denote by F̃ the ñ× 2q matrix of all the dual vertex features
arranged row-wise. To avoid ambiguity, for undirected graphs we construct two
nodes in the dual for every undirected edge {i, j}, namely (i, j), (j, i) ∈ Ṽ, and
we connect a dual node (i, j) to all the nodes corresponding to edges pointing to
i or departing from j. This avoids establishing an order among vertices which
otherwise would be required to define edge features (if one edge (i, j) is represented
by one dual node, one needs to define whether the features of i or j comes first
in the concatenation).

Applying GAT to the dual graph G̃ with features F̃ has the form

f̃ ′ij = ξd

∑
r∈Ni

α̃ij,ir f̃irW̃ +
∑
t∈Nj

α̃ij,tj f̃tjW̃

 , (5)

α̃ij,ik =
eη(ã([f̃ijW̃, f̃ikW̃]))∑

r∈Ni

eη(ã([f̃ijW̃, f̃irW̃])) +
∑
t∈Nj

eη(ã([f̃ijW̃, f̃tjW̃]))
(6)

where f̃ ′ij denotes the q̃-dimensional output feature of a dual vertex (i.e., primal
edge) (i, j), α̃ij,ik are the dual attention scores, W̃ is a 2q × q̃ learnable weight
matrix, ã is a linear layer mapping 2q̃-dimensional input to a scalar output, ξd is
the dual layer activation function (typically, a ReLU) and η is the Leaky ReLU.

The dual convolution on G̃ is equivalent to exchanging information across
primal edges which share common directions. In particular, primal edge (i, j)
exchanges information only with edges that income to primal vertex i or outgo
from from primal vertex j. This additional diffusion naturally allows to better
characterize the behavior of each single connection, as every edge (i, j) is now
not only represented by the features associated with the corresponding incident
vertices but also by an aggregated representation of all the edges that present
common spreading patterns (i.e., that bring information to i or spread information
from j). This naturally allows to predict better attention scores. Note that such
description could not be achieved with two GAT layers as our aggregation step
in equations (5)-(6) depends on dual connectivity plus the concatenation of
the features of incident vertices and not on the features of the single vertices
themselves. For a concrete example, consider Figure 2. Since vertices 2 and 3 have
the same attribute vectors (f2 = f3), primal GAT will produce the same attention
scores for edges (1, 2) and (1, 3). In contrast, dual GAT (our dual convolutional
layer) is able to differentiate between them by aggregating different edge features
for the two different edges.

Primal convolution. The convolution on the primal graph is applied using
a GAT on the primal vertex features F. The key difference compared to the
simple GAT (4) is that primal attention scores are computed using the dual

6 Monti et al.

vertex features F̃′ produced by the dual convolution,

f ′i = ξp

(∑
r∈Ni

αijfiW

)
, αij =

eη(a(f̃
′
ij))∑

k∈Ni

eη(a(f̃
′
ik))

, (7)

where f ′i denotes the q′-dimensional output features at primal vertex i, αij are
the primal attention scores, ξp is the primal layer activation function, W is a
q × q′ learnable weight matrix, and a is a linear layer mapping q̃-dimensional
input to a scalar output.

3.2 Architecture Variants

GAT as an instance of DPGCNN. The primal and dual convolutional layers
can be used as building blocks of graph CNNs. The dual convolution precedes one
or more primal convolutional layers; multiple layers can be used to obtain deep
neural networks. GAT is a particular setting of DPGCNN obtained by setting
the dual attention scores α̃ij,ik = 0 for k 6= j and 1 otherwise.

DPGCNN with polynomial filters. Convolution with polynomials of nor-
malized adjacency matrices are obtained with DPGCNN by computing different
attention scores for different orders:

f ′i = ξ

(
p∑
l=0

f
(l)
i Θl

)
, (8)

f
(k)
i =

∑
j∈Ni

α
(k)
ij f

(k−1)
j , f

(0)
i = fi (9)

where Θl denote polynomial coefficients and the recursive definition is similar
to [32]. α(k)

ij is obtained as described in Eq. 6 or 7 if operating on the primal or
dual respectively. Such an approach can be exploited in Eq. 5 or 7 to further
enrich the filters on both primal and dual graphs.

Arbitrary edge features. We have so far assumed for simplicity that the
edge features are derived from vertex features, fij = [fi, fj]. Our framework
naturally allows to apply dual convolutional layers to arbitrary edge features,
both vector- or scalar-valued.

1

3

2 f3

01
1

f2

01
1

Fig. 2. Unlike GAT, DPGCNN is able to distinguish edges (1, 2) and (1, 3), even though
nodes (1) and (2) have the same feature vectors f2 = f3.

Dual-Primal Graph Convolutional Networks 7

4 Experiments

4.1 Citation Networks

Vertex Classification. The first task we consider is a semi-supervised (trans-
ductive) learning problem on two citation networks (CORA and Citeseer [36]),
following the experimental setup from [41,21,30,37]. The vertices of the citation
graph represent scientific papers and edges are citations. The task is to classify
each vertex in the graph according to its publication field. CORA contains 2708
vertices, 5429 edges, 7 different categories and 1433 binary features per vertex;
Citeseer contains 3327 vertices, 4732 edges, 6 different classes and 3703 features
per vertex.

For each dataset we repeat verbatim the experiments presented in [21,30,37].
As training set, we use 140 vertices sampled from CORA and 120 from Citeseer,
using the split from [41]. We use the architecture of [37] (i.e. 2 convolutional
layers, 8 heads for first layer with 8 features as output per head, 1 head for the
second layer with # classes as output) with one head and 32 features as output
when convolving on the dual graph. Training settings, including dropout, weight
decay and learning rate are as in [37]. Table 1 summarizes the results, averaged
over 100 runs to account for different random initializations. DPGCNN beats all
the competing architectures, albeit by a small margin.

Table 1. Vertex classification accuracy on CORA and Citeseer citation networks,
averaged over 100 runs.

Method Cora Citeseer

MLP 51.1% 46.5%
ManiReg [2] 59.5% 60.1%
SemiEmb [39] 59.0% 59.6%
LP [42] 68.0% 45.3%
DeepWalk [34] 67.2% 43.2%
ICA [25] 75.1% 69.1%
Planetoid [41] 75.7% 64.7%

ChebNet [10] 81.2% 69.8%
GCN [21] 81.5% 70.3%
MoNet [30] 81.7 ± 0.5% –
GAT [37] 83.0 ± 0.7% 72.5 ± 0.7%
DPGCNN 83.3 ± 0.5% 72.6 ± 0.8%

We further reproduced a different setting of the same experiment reported
in [23], in which 500 vertices were sampled from CORA for training5. We used

5 Training/validation/test indices together with CayleyNet performance have been
obtained by the authors of the paper, scaled unnormalized laplacian has been used
for the reported CayleyNet’s accuracies.

8 Monti et al.

an architecture with two convolutional layers and 16 features as output from
convolutional layers on both primal and dual graphs (realized as described in
equation (8) with monomial bases and attention). Dual convolution was applied
only in the second layer, in order to reduce the overall number of parameters.
Attention with one head was used on both primal and dual to provide a fair
comparison with CayleyNet [23]. Dropout, weight decay and learning rate were
as in [23]. We compare our results to CayleyNet [23] and GAT [37] with the same
architecture, using polynomial filters of different order (GAT with polynomial
filters was implemented according to equation 8, using primal graph only). Table 2
reports the performance averaged on 20 runs. Our DPGCNN beats the competing
architectures.

Table 2. Number of parameters / Vertex classification accuracy on CORA citation
network (500 training samples) using polynomial filters of different order.

Order p CayleyNet GAT DPGCNN

1 46K / 88.1 ± 0.6% 46K / 88.65 ± 0.58% 47K / 88.92 ± 0.51%
2 69K / 88.0 ± 0.5% 69K / 88.00 ± 0.39% 71K / 88.22 ± 0.41%
3 92K / 87.6 ± 0.6% 92K / 87.54 ± 0.52% 95K / 87.69 ± 0.42%
4 115K / 86.4 ± 0.8% 115K / 87.06 ± 0.42% 118K / 87.30 ± 0.50%
5 138K / 86.5 ± 0.8% 138K / 86.67 ± 0.52% 142K / 86.68 ± 0.74%
6 161K / 86.7 ± 0.7% 161K / 86.38 ± 0.57% 165K / 86.50 ± 0.61%

Link Direction Prediction. The second task we address is to predict the
direction of links, which we cast as a semi-supervised classification problem on
the dual graph. For this experiment, we used a directed version of the CORA
graph [32,4], of which we took a subset containing 1118 vertices (each represented
by a 8710-dimensional feature vector) and 4155 directed edges. All the edges
were turned into undirected; given an undirected edge {i, j}, the goal was to
predict the direction of the original edge. The dual graph contains every edge in
the two possible directions i.e. (i, j), (j, i) ∈ Ṽ, link prediction in the primal is
thus a binary classification problem on the dual. 10% of edges’ directions were
used for training, 10% for validation, and 10% for testing.

Three different architectures were tested: GAT operating only on the primal
graph (Primal GAT), GAT operating only on the dual graph (Dual GAT), and
a DPGCNN operating on both. Three convolutional layers and a final fully
connected layer followed by softmax were used in all the three architectures. The
final FC layer was applied (i) on the concatenation of the features of nodes i and
j for Primal GAT since outputs only node features, (ii) on the features of edge
(i, j) for Dual GAT, and (iii) on the concatenation of the two for DPGCNN. In
Dual GAT, we had an additional initial dimensionality reduction layer to assure
approximately equal overall number of parameters in all the three models for a
fair comparison. DPGCNN uses primal and dual convolution in every layer. Each
dual convolutional layer receives as input for each edge the refined edge features

Dual-Primal Graph Convolutional Networks 9

concatenated with the refined vertex features of its incident nodes produced
by the previous dual/primal convolutional layer. Edge features were initialized
with the features of incident nodes for both Dual GAT and DPGCNN. Mean
cross-entropy, dropout with keep probability of 0.9, and learning rate of 10−2
were used for all models. Table 4.1 presents the link prediction results averaged
on 100 runs, showing that DPGCNN outperforms both competitors.

Table 3. Link direction prediction accuracy on directed CORA, averaged over 100
runs.

Method Accuracy #Param
Dual GAT 72.94 ± 1.12% 140K
Primal GAT 74.95 ± 1.38% 140K
DPGCNN 76.45 ± 1.07% 142K

4.2 Graph-Guided Matrix Completion

In our final experiment, we address the problem of item recommendation, formu-
lated as matrix completion problem on user and item graphs [30]. Such problems
are also known under the name of geometric- or graph-guided matrix completion.
The task is, given a sparsely sampled matrix of scores assigned by users (columns)
to items (rows), to fill in the missing scores. The similarities between users and
items are given in the form of column- and row graphs, respectively. Monti et al.
[30] approached this problem as learning with a separable recurrent Multi-Graph
CNN (MGCNN) architecture, using an extension of ChebNets [10] to matrices
defined on multiple graphs in order to extract spatial features from the score
matrix; these features are then fed into an RNN producing a sequential estimation
of the missing scores. We repeated verbatim the experiment of [30,23] on several
standard datasets used in the recommender systems literature (MovieLens [28],
Flixster [19], Douban [26], and YahooMusic [11]), using different convolutional
layers inside RMGCNN (Chebyshev [10], Cayley [23], GAT [37] and the proposed
Dual-Primal convolution). For reference, we also report the results of some stan-
dard matrix completion methods that are not learning-based. For Douban and
Yahoo Music datasets, only a single user/items graph was used, as described in
[31].

Polynomial filters (Eq. 8) of degree p = 4 were used for convolution on the
primal graph; different attention scores were computed according to (Eq. 7) for
every order and for every diffusion iteration. We used 4 heads on the dual for
every dataset besides Douban where just one head has been exploited because
of overfitting. Eight features have been produced as output for each head on
the dual. GAT hyperparametrs were determined by cross-validation for Flixster
and Yahoo Music; the same hyperparameters were used for DPGCNN. For the
remaining datasets, we used hyperparameters from [31]. To make the problem
more tractable with classic GPUs (in our experiments we used Nvidia Titan X

10 Monti et al.

with 12GB RAM), randomly sparsified versions of the dual graph were used with
DPGCNN for Movielens (100 neighbors in the dual), Flixster (18 neighbors) and
Yahoo Music (30 neighbors). Such sparsification was pre-computed and fixed
throughout the entire learning and testing process. Table 4 shows the results for
different architectures. DPGCNN outperforms all the competing Graph CNN
architectures on all the considered datasets, and beats by a significant margin the
standard recommendation systems. Table 5 compares the number of parameters
required by MGCNN implemented with GAT and DPGCNN.

Table 4. Performance (RMSE) of several matrix completion methods on the MovieLens,
Flixster, Douban and Yahoo Music datasets (– indicates that the result was not reported
in the original paper). GAT’s performance has been computed in this work.

Method MovieLens Flixster Douban Yahoo
IMC [18,40] 1.653 – – –
GMC [20] 0.996 – – –
MC [8] 0.973 – – –
GRALS [35] 0.945 1.245 0.833 38.042

M
G
C
N
N Chebyshev [31] 0.929 0.926 0.801 22.415

Cayley [23] 0.922 – – –
GAT [37] 0.929 0.931 0.791 22.102
Dual/Primal 0.915 0.902 0.789 21.970

Table 5. Number of parameters for MGCNN with GAT layers and our DPGCNN.
Note how both solutions present same number of parameters for all considered datasets.
The increased number of parameters for Douban and Yahoo is due to the single graph
used for implementing MGCNN.

Method MovieLens Flixster Douban Yahoo
GAT-MGCNN [37] 23K 22K 41K 41K
Dual/Primal-MGCNN 25K 24K 42K 42K

5 Conclusions

We presented a Dual-Primal Graph Convolutional Network able to realize rich
convolutional filters by operating on both the primal and the dual graph. Our
architecture achieves state-of-the-art performance on vertex classification, link
prediction and matrix completion problems by requiring a small amount of addi-
tional parameters. In future works we plan to further investigate the importance
of the dual graph by exploring applications to Computer Vision and Graphics
(e.g. point clouds and meshes) as well as analyzing datasets where edge features
are available.

Dual-Primal Graph Convolutional Networks 11

References

1. Aigner, M.: On the linegraph of a directed graph. Mathematische Zeitschrift 102(1),
56–61 (1967)

2. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. JMLR 7, 2399–2434 (2006)

3. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex
networks. Science 353(6295), 163–166 (2016)

4. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of attributed graphs:
Unsupervised inductive learning via ranking. arXiv:1707.03815 (2017)

5. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M.: Learning shape correspondence
with anisotropic convolutional neural networks. In: Proc. NIPS (2016)

6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017)

7. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv:1312.6203 (2013)

8. Candès, E., Recht, B.: Exact Matrix Completion via Convex Optimization. Foun-
dations of Computational Mathematics 9(6), 717–772 (2009)

9. Chen, Z., Li, L., Bruna, J.: Supervised community detection with line graph neural
networks. ICLR (2018)

10. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Proc. NIPS (2016)

11. Dror, G., Koenigstein, N., Koren, Y., Weimer, M.: The Yahoo! music dataset and
KDD-Cup’11. In: KDD Cup (2012)

12. Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-
Guzik, A., Adams, R.P.: Convolutional networks on graphs for learning molecular
fingerprints. In: Proc. NIPS (2015)

13. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. arXiv:1704.01212 (2017)

14. Gross, J.L., Yellen, J.: Graph theory and its applications. CRC press (2005)
15. Harary, F.: Graph theory. Addison-Wesley (1969)
16. Harary, F., Norman, R.Z.: Some properties of line digraphs. Rendiconti del Circolo

Matematico di Palermo 9(2), 161–168 (1960)
17. Henrion, I., Brehmer, J., Bruna, J., Cho, K., Cranmer, K., Louppe, G., Rochette,

G.: Neural message passing for jet physics (2018)
18. Jain, P., Dhillon, I.S.: Provable inductive matrix completion. arXiv:1306.0626 (2013)
19. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for

recommendation in social networks. In: Proc. Recommender Systems (2010)
20. Kalofolias, V., Bresson, X., Bronstein, M.M., Vandergheynst, P.: Matrix completion

on graphs. arXiv:1408.1717 (2014)
21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks (2017)
22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. arXiv:1609.02907 (2016)
23. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: Graph convolutional

neural networks with complex rational spectral filters. arXiv:1705.07664 (2017)
24. Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion

with graph convolutional autoencoders. CVPR (2018)
25. Lu, Q., Getoor, L.: Link-based classification. In: Proc. ICML (2003)

12 Monti et al.

26. Ma, H., Zhou, D., Liu, C., Lyu, M., King, I.: Recommender systems with social
regularization. In: Proc. Web Search and Data Mining (2011)

27. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional
neural networks on riemannian manifolds. In: Proc. 3dRR (2015)

28. Miller, B.N., et al.: MovieLens unplugged: experiences with an occasionally con-
nected recommender system. In: Proc. Intelligent User Interfaces (2003)

29. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

30. Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J., Bronstein, M.M.:
Geometric deep learning on graphs and manifolds using mixture model CNNs. In:
Proc. CVPR (2017)

31. Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with recur-
rent multi-graph neural networks. In: Proc. NIPS (2017)

32. Monti, F., Otness, K., Bronstein, M.M.: Motifnet: a motif-based graph convolutional
network for directed graphs. arXiv:1802.01572 (2018)

33. Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B., Rueckert,
D.: Spectral graph convolutions for population-based disease prediction. In: Proc.
MICCAI (2017)

34. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online learning of social represen-
tations. In: Proc. KDD (2014)

35. Rao, N., Yu, H.F., Ravikumar, P.K., Dhillon, I.S.: Collaborative filtering with graph
information: Consistency and scalable methods. In: Proc. NIPS (2015)

36. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective
classification in network data. AI Magazine 29(3), 93 (2008)

37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. arXiv:1710.10903 (2017)

38. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. arXiv:1801.07829 (2018)

39. Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised
embedding. In: Neural Networks: Tricks of the Trade, pp. 639–655 (2012)

40. Xu, M., Jin, R., Zhou, Z.H.: Speedup matrix completion with side information:
Application to multi-label learning. In: Proc. NIPS (2013)

41. Yang, Z., Cohen, W., Salakhutdinov, R.: Revisiting semi-supervised learning with
graph embeddings. In: Proc. ICML (2016)

42. Zhu, X., Ghahramani, Z., Lafferty, J., et al.: Semi-supervised learning using gaussian
fields and harmonic functions. In: Proc. ICML (2003)

43. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with
graph convolutional networks. arXiv:1802.00543 (2018)

Dual-Primal Graph Convolutional Networks 13

A Visualizations

Fig. 3. Top: primal graph of the CORA citation network. Vertex colors code the
groundtruth classes. Vertex positions are the learned primal vertex features, mapped
to the plane using tSNE. Edge thickness represents the edge attention scores. Bottom:
dual graph of CORA. Edge colors represent the groundtruth classes.

14 Monti et al.

Fig. 4. Top: primal graph of the portion of directed CORA used for link prediction. Ver-
tex colors code the ground-truth classes. Bottom: corresponding dual graph. In green/red
are dual vertices (primal edges) that were correctly/wrongly classified, respectively.

	Dual-Primal Graph Convolutional Networks

