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Abstract. Recently, there is much research on convolution for graphs, however 

research on deep learning for graphs (multi-layered network as in CNN on im-

ages) has yet to make much progress. To achieve multi-layering for graphs, 

there is a need for pooling or an operation that more generally reduces the free-

dom of parameters as they go up the layers. But because graphs have uneven 

structures, they are difficult to handle explicitly. This paper proposes Edge Re-

structured Pooling, based on graph topology reconstruction, as a new pooling 

method for the problem of multi-layering. The key idea of the proposed method 

is to apply the concept close to the pooling operation on the image to the graph. 

Graphs cannot be summarized in windows like image pooling but, instead, the 

proposed method re-redraws the edge in every pooling operation so that the 

method can explicitly calculate a faraway node every time the layer is superim-

posed. This enables pseudo-grouping in accordance with pooling size of, such 

as CNN. Then we redefine the convolution operation or max-pooling for edge 

restructured pooling to realize multi-layering. The effectiveness of the proposed 

method is validated by experiments using Cora and Citeseer for node prediction 

tasks. 
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1 Introduction 

A convolutional neural network (CNN) has been a major success in the image pro-

cessing field and is one of the main factors in the recent deep learning trend. Image 

processing around 2000 was mainly a combination of a feature vector designed man-

ually, such as SIFT [1], and a classifier, such as SVM [2]. However, a CNN method 

called AlexNet appeared at the Image Net Large Scale Visual Recognition Challenge 

(The ILSVRC is an international competition that evaluates the precision of image 

recognition) held in 2012, and won by a wide margin over conventional approaches 

[3] [4]. From this point, the methods, such as CNN based on deep learning, have be-

come mainstream in the image processing field. CNN is an extension of the classic 

multilayer perceptron but it locally limits the connections between neurons based on 

the knowledge in the brain's visual cortex structure and has a feature that is a loose 

coupling between layers. Its advantage is that it can easily extract a feature suitable 

for each task by directly using the pixels of an input image. 
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CNN mainly consists of convolution layers that extracts local features from the im-

age and pooling layers that summarize the feature locally. The convolution layer has 

multiple kernels and outputs a feature map by convoluting the kernels for the input. 

The pooling layer subsamples the feature map output by the convolutional layer; max-

pooling is widely used for that method [5] [6]. Each CNN parameter is updated (from 

a randomly determined initial value) by supervised learning; the error backpropaga-

tion method and an optimal parameter can be obtained [7] [8]. 

However, CNN is a technique developed based on image processing and the input 

data assumes a regular and a uniform data structure such as a grid. The convolution 

layer and the pooling layer are a grid-aware aggregation operation and the parameters 

of convolution filter are also shared and used in all locations. This means they must 

have a regular and uniform structure and causes problems that make it difficult to 

handle other data. 

In response to this problem, in recent years attention has been focused on CNN for 

structural data that can be expressed more generally, such as graphs. The graph struc-

ture data is diverse and, for example, includes social network data, geospatial data, 

traffic networks, financial networks, proteins, molecular structure data, etc. The appli-

cation is expected to be a more generalized method because it can express not only 

regular structures like grids but also complex relationship information. 

A graph is a data structure consisting of a collection of vertices and edges. Early 

research on graph neural networks (GNN) proposed as recursive neural networks 

(RNN), which directly handled graphs [9] [10] [11]. However, in recent years, the 

focus of research has shifted to generalizing the convolution of graphs. They are 

mainly classified into frequency-based and space-based methods. After Bruna et al. 

[12] defined the fundamental convolution on a graph in the frequency base, various 

types of networks have been developed [13]-[27].  

However, while there is much research on convolution for graphs, research on deep 

learning (multi-layered networks as in CNN on images) has only partly begun [26] 

[27] and has yet to make much progress.  

This paper proposes Edge Restructured Pooling, based on graph topology recon-

struction, as a new pooling method for the problem of multi-layering, which remains 

an issue for graph convolutional networks. The key idea of the proposed method is to 

apply the concept close to the pooling operation on the image to the graph. Graphs 

cannot be summarized in windows like image pooling but, instead, the proposed 

method re-redraws the edge in every pooling operation so that the method can explic-

itly calculate a faraway node every time the layer is superimposed. This enables pseu-

do-grouping in accordance with pooling size of, such as CNN. Then we redefine the 

convolution operation or max-pooling for edge restructured pooling and realize a 

multi-layered graph representation by executing these three operations as a set. The 

effectiveness of the proposed method is validated by experiments using Cora and 

Citeseer for node prediction tasks. 
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2 Previous works on graph convolutional networks 

Previous works on graph convolutional networks are mainly divided into frequency-

based and spatially-based methods. 

Bruna et al. [12] proposed a frequency domain-based graph convolution. In this 

method, a local convolution filter on the graph is designed by executing spectral clus-

tering after calculating the eigenvalue decomposition of graph Laplacian to learn mul-

tiscale features. Defferrard et al. [13] next proposed an approximation method with 

Chebyshev polynomials to reduce the calculation cost for eigenvalue decomposition 

of graph Laplacian. Kipf & Welling et al. [14] further simplified the model approxi-

mated by the Chebyshev polynomial by limiting the target filter to the nearest (one 

step) filter. The model for the graph convolutional network (GCN) proposed by Kipf 

& Welling et al. have the format spatially, where the convolution of adjacent nodes is 

simply expressed and, as a result, it was merged with the spatially-based method. 

A spatially-based method acts on spatially close nodes on a graph and directly de-

fines the convolution. In particular, when it calculates node embedding, it performs a 

convolution operation that applies a filter (linear conversion) to all adjacent node 

information, aggregates the information, and then executes a non-linear operation 

such as ReLU. In addition to GCN [15], which showed the coupling with a frequency 

base by limiting to adjacency, methods and extensions such as [16], [17], [18], [19] 

and [20] have been proposed.  

Furthermore, in the latest approaches, the graph attention network (GAT) [23], the 

relational graph convolutional network (RGCN) [24], and edge embedding [17] [25] 

have been developed. The graph attention network (GAT) [23] makes the relationship 

have a weight by combining the attention techniques [20] [21] [22] with a method 

such as GCN. The relational graph convolutional network (RGCN) [24] expanded 

GCN, enabling to handle edge attributes and directions. The edge embedding can 

embed the edge attributes. The CNN on these graphs is applied to the graph cluster-

ing, semi-supervised node classification [14] [18], the edge prediction [14] and the 

knowledge graph [24]. 

While there has been much research on convolution regarding graphs, deep learn-

ing (multi-layering) research on graphs is not being done, although some groups [26] 

[27] have begun. To achieve multi-layering, there is a need for pooling or an opera-

tion that more generally reduces the freedom of parameters as they go up the layers. 

But because graphs, unlike grids, have uneven structures, they are difficult to handle 

explicitly. If many convolution layers are superimposed without pooling, the number 

of parameters only increases while the freedom to express (regularization cannot be 

applied) is not decreasing. As a result, when the method causes over-training when 

learning the parameters or, in a worst-case scenario, an ill-posed problem occurs, 

learning may not proceed at all. In addition, depending on the problem to be applied, 

if it cannot make multilayers, it will be inferred only from only adjacent nodes. If the 

impact of distant nodes is significant in node prediction, or if layered information is 

required in class separation, then precision itself cannot be expected. In GCN [14], it 

is reported that the precision decreases if the layer is deepened. It is believed that a 

shallow network of about two layers would be good. 
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Some groups such as Ying et al. [26] have proposed a graph pooling module 

(DIFFPOOL) that is differentiable and can be used by combining with GCN. 

DIFFPOOL is a method that learns soft cluster allocation for the node in each layer 

and accumulates the layers while inputting the data in the next layer based on the 

cluster allocation and generating the adjacency matrix. This method inputs the data by 

a matrix (cluster allocation) and degenerates the adjacency matrix. This aspect of the 

method corresponds to pooling, and has a structure where it can learn another graph 

neural network to learn the matrix. 

Xu et al. [27] has proposed the Jumping Knowledge Network (JK-Net) by focus-

ing, as a problem of multi-layering, on the fact that the reachable range within the 

same step is different for each node according to the locality (the difference between 

sparseness and density) in the graph topology. The JK-NET can learn the data by 

adaptively adjusting the impacted range for each node. By providing a path that can 

skip the network in each layer, JK-NET determines the final embedding by using an 

aggregator (Concat/Max-pool/LSTM) that aggregates the information. This is differ-

ent from the so-called CNN pooling operation, but it can be a significantly critical 

element if the graph is more uneven with a lot of sparseness and density. 

3  Edge Restructure Pooling 

The previous chapter described the difficulty of multi-layered graph convolution 

and introduced DIFFPOOL [26] and JK-Net [27] as an approach to multi-layering 

that some groups have just started to tackle. To overcome these issues, this paper 

proposes a pooling method that more directly reconfigures graph topology.  

DIFFPOOL learns soft cluster allocation in an additional graph neural network and 

obtains a matrix that degenerates the number of nodes (number of clusters), but it 

defines the operation as a differentiable calculation. As a result, it could not input the 

basic factors that are in CNN. JK-Net cannot consider the pooling operation between 

the nodes on the graph while it selects Max-pooling between layers in the aggregator. 

This is because JK-NET inherently has a motivation that is different from pooling 

operations such as CNN.  

This paper discusses a method that more directly artificially enables grouping (in 

accordance to pooling size, such as CNN) or Max-pooling. The key idea of the pro-

posed method is to adapt the concept (similar to a pooling operation on the image) to 

the graph. A graph cannot be collected in the window like pooling an image; instead, 

the proposed method redraws the edge in every pooling operation so that it can ex-

plicitly perform calculations as well with distant nodes every time a layer is superim-

posed. 

The following outlines the basics of GCN [14] and RGCN [24] and then considers 

the key points of pooling in the graph. Then, a new pooling method (a process that 

redraws an edge) and an extension of GCN, including a process to re-draw an edge, is 

described. Finally, multi-layering is described. 
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3.1 Graph Convolutional Network (GCN)  

The Graph Convolutional Network (GCN) is expressed by the following equation 

where the feature vector in the l-th layer is 𝐻(𝑙) in the graph 𝐺 = (𝑉, 𝐸) consisting of 

node 𝑣 ∈ 𝑉 and edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸.  

𝐻(𝑙+1) = 𝜎 (�̃�−
1
2�̃��̃�−

1
2𝐻(𝑙)𝑊(𝑙)) (1) 

Here, �̃� = 𝐴 + 𝐼𝑁  expresses an adjacency matrix in which the self loop is added. 

�̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗  and 𝑊(𝑙)  are the weighted matrix of each layer. 𝜎(∙) is the activating 

function such as ReLU(∙). �̃�−
1

2�̃��̃�−
1

2 shows the regularized target matrix, expressing 

the weighted sum of the node in the adjacent relationship. 

As a result, Equation (1) can be rewritten as follows by substituting ℎ𝑖
(𝑙) for the 

feature vector of node 𝑣𝑖 and assuming that the set of nodes adjacent to node 𝑣𝑖 is 𝑁𝑖.  

ℎ𝑖
(𝑙+1) = 𝜎(∑

1

√𝑐𝑖𝑐𝑗𝑗∈𝑁𝑖

ℎ𝑗
(𝑙)
𝑊(𝑙)) (2) 

Assume that the node set 𝑁𝑖 adjacent to node 𝑣𝑖 is {𝑣𝑗 ∈ 𝑉|(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} and the node 

set 𝑁𝑖 in graph �̃� including the self loop is {𝑣𝑖} ∪ {𝑣𝑗 ∈ 𝑉|(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸}. Here, 
1

√𝑐𝑖𝑐𝑗
 is 

the normalized term and 𝑐𝑖 expresses the degree of node 𝑣𝑖.  
Hamilton et al. [18] also proposed a model very similar to these models by setting 

the normalized term as the mean aggregator. 

ℎ𝑖
(𝑙+1) = 𝜎(∑

1

�̃�𝑗
𝑗∈𝑁𝑖

ℎ𝑗
(𝑙)
𝑊(𝑙)) (3) 

Here, �̃�𝑗 is the degree of node 𝑣𝑖 in graph �̃� including the self loop. 

The following shows the RGCN, an extended model of GCN, which can handle the 

digraph and relationship information. 

ℎ𝑖
(𝑙+1) = 𝜎(∑ ∑

1

𝑐𝑖,𝑟
𝑗∈𝑁𝑖

𝑟

𝑊𝑟
(𝑙)

𝑟∈𝑅

ℎ𝑗
(𝑙) +𝑊0

(𝑙)ℎ0
(𝑙)) (4) 

Here, 𝑁𝑖
𝑟  is the node set adjacent to Node 𝑣𝑖  with the relationship 𝑟 ∈ 𝑅. 𝑐𝑖,𝑟  is the 

normalized term expressed by 𝑐𝑖,𝑟 = |𝑁𝑖
𝑟|. Note that, unlike GCN, weighted matrix 

𝑊𝑟
(𝑙)

 is provided not only for 1 channel but also for the number of relationships 𝑟s.  

Fig. 1 shows a diagram of GCN or RGCN. As shown in the figure, the convolution 

(GCN or RGCN) on the graph can be defined as a method that assumes the convolu-

tion as one hop filter on the graph and calculates the feature vector by taking into 

account the relationship with the adjacent nodes for each node. For multi-layering, 

this model is applied repeatedly. However, this method may impose some problems. 



6 

For example, it is not easy to interact with a faraway node because only one hop is 

considered in one layer at a time and the method cannot learn well because only the 

number of parameters increases because the topology does not change. Actually, in 

many graph convolutions of the GCN type, the number of layers is about two. 

 

Fig. 1. Diagram for convolution in the GCN of RGCN model. 

3.2 Pooling on graph 

Fig. 2 shows the pooling operation on a grid (image). This pooling operation defines a 

small area by grouping the nodes as shown in the figure below and does a subsam-

pling to degenerate the matrix while keeping critical information (features), particu-

larly, in the Max-pooling normally used, the operation to select the maximum area 

among small areas is done. The most critical effect impacted by this pooling is main-

ly, (i) selecting the maximum area compresses the information and, (ii) grouping the 

nodes changes the adjacency relationship in the next layer. 

 

Fig. 2. Example of a pooling operation on an image. 

If the pooling operation above needs to be realized on a graph, the (i)-operation on-

ly needs to select the maximum area among its own node and adjacent nodes, as 

shown in Fig. 3 (a), and it can be naturally defined. On the other hand, the (ii)-

operation is not easy because it is not an operation on the grid, as shown in Fig. 3 (b). 

If there is an adjacent node (marked with a star in the figure), which is looked up 



7 

commonly by different nodes, how the nodes can be grouped is not yet found, mean-

ing there is no specific method to do so.  

 
(a) (i)-operation                    (b) (ii)-operation 

Fig. 3. Pooling operation on a graph: (a) (i)-operation on a graph, (b) (ii)-operation on a graph. 

However, instead of grouping the nodes, if the (ii)-operation can be defined as to 

change the adjacency relationship in the next layer, then it may be artificially realized 

by the process redrawing the edges. The proposed method calls this "Edge Restruc-

tured Pooling (ERP)". For example, in the l-th layer graph where Max-pooling with 

adjacent node in each node is calculated, the graph topology of l+1-th layer is con-

verted to one which connects to the 2 hops ahead, as shown in Fig. 4. 

In each layer where the convolution is calculated, executing Max-pooling and Edge 

Restructured Pooling together can define the direct pooling operation on the graph, 

aiming to realize multi-layering. 

 

Fig. 4. Overview of Edge Restructured Pooling. 

3.3 Proposed method 

To realize the idea of proposed Edge Restructured Pooling, the edge coefficient 𝛼 is 

newly defined. The edge coefficient 𝛼 prevents the number of edges from increasing 

too many when the graph is converted to a 2-hop graph in each layer. For example, 
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there may be cases where a node that can be a hub is adjacent to the node. If the edge 

coefficient is not supposed, a tightly-coupled graph may be restructured immediately 

because the adjacent node of the hub is directly connected in the next layer. So, for 

the edge coefficient 𝛼, the following is taken into consideration: "As the interaction 

with the faraway node progresses in each layer, its influence decreases". Furthermore, 

the following is also taken into consideration: "The adjacent node is connected to how 

many nodes ahead." It is a natural manipulation to take into consideration "decreasing 

the influence level by superimposing the layers" and "influence the relay node 2-hops 

ahead" for 𝛼. 

The flow of 1-layer convolution and pooling by the proposed method consists of 

the following: (i) Extended GCN, (ii) Graph Max Pooling, and (iii) Edge Restructured 

Pooling. They are described in the following. 

(i) Extended Graph Convolutional Network (GCN) 

The extended GCN in the proposed method extends takes the edge coefficient 𝛼  into 

consideration. The edge coefficient 𝛼 is given to each edge, and expressed as 𝛼𝑖,𝑗
(𝑙)

 in 

edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 in the l-th layer. The extended GCN is expressed as follows by us-

ing 𝛼𝑖,𝑗
(𝑙)

 where as the feature vector of node 𝑣𝑖 is ℎ𝑖
(𝑙)

, node set adjacent to node 𝑣𝑖 in 

�̃� is 𝑁𝑖 and the weighted matrix is 𝑊(𝑙) . 

ℎ𝑖
(𝑙+1) = 𝜎(∑ 𝛼𝑖,𝑗

(𝑙)

𝑗∈𝑁𝑖

ℎ𝑗
(𝑙)
𝑊(𝑙)) (5) 

This is the equation where the normalized terms in Equation (2) and Equation (3) are 

replaced by 𝛼𝑖,𝑗
(𝑙)

. As the initial value of the edge coefficient 𝛼, 𝛼𝑖,𝑗
(1)
=

1

𝑐�̃�
 is set in the 

1st layer. The updated equation of 𝛼𝑖,𝑗
(𝑙)

 is described in "(iii) Edge Restructured Pool-

ing". It can be considered that 𝛼𝑖,𝑗
(𝑙)

 functions as the attention statistically determined 

by the topology. 

(ii) Graph Max Pooling 

Graph Max Pooling executes "Max calculation" between the self node and adjacent 

node (node set 𝑁𝑖 = {𝑣𝑖} ∪ {𝑣𝑗 ∈ 𝑉|(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸}) as shown in the equation below. 

ℎ_𝑝𝑜𝑜𝑙𝑖
(𝑙)
= 𝑚𝑎𝑥({ℎ𝑗

(𝑙)|𝑗 ∈ 𝑁𝑖}) (6) 

Instead of taking the maximum value from node set 𝑁𝑖 , the pooling value may be 

obtained by sampling the expected value which stochastically has the maximum value 

by considering 𝛼𝑖,𝑗
(𝑙)

.  

(iii) Edge Restructured Pooling 

As shown in Fig. 5, the proposed method changes the adjacency relationship by re-

drawing the edges after the convolution process and pooling process. Fig. 5 shows the 

outline of the process updating the edges. As for the three points - 𝑠𝑟𝑐0, 𝑠𝑟𝑐1 and 

𝑑𝑠𝑡, if edge (𝑣𝑠𝑟𝑐0, 𝑣𝑠𝑟𝑐1) and edge (𝑣𝑠𝑟𝑐1, 𝑣𝑑𝑠𝑡) exist in the l-th layer, as shown in the 
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figure, edge (𝑣𝑠𝑟𝑐0 , 𝑣𝑠𝑟𝑐1) and edge (𝑣𝑠𝑟𝑐1, 𝑣𝑑𝑠𝑡) are deleted in the l+1-th layer, and 

edge (𝑣𝑠𝑟𝑐1, 𝑣𝑑𝑠𝑡) is newly created. The following shows the equation to update the 

edge coefficient. 

𝛼𝑠𝑟𝑐0,𝑑𝑠𝑡
(𝑙+1)

=

{
 
 

 
 𝛼𝑠𝑟𝑐0,𝑠𝑟𝑐1

(𝑙) 𝛼𝑠𝑟𝑐1,𝑑𝑠𝑡
(𝑙)

∑ 𝛼
𝑠𝑟𝑐1,𝑗

(𝑙)
𝑗∈𝑁𝑠𝑟𝑐1

    (𝛼𝑠𝑟𝑐0,𝑠𝑟𝑐1
(𝑙) 𝛼𝑠𝑟𝑐1,𝑑𝑠𝑡

(𝑙)

∑ 𝛼𝑠𝑟𝑐1,𝑗
(𝑙)

𝑗∈𝑁𝑠𝑟𝑐1

≥ 𝜃)

0                        (𝛼𝑠𝑟𝑐0,𝑠𝑟𝑐1
(𝑙) 𝛼𝑠𝑟𝑐1,𝑑𝑠𝑡

(𝑙)

∑ 𝛼𝑠𝑟𝑐1,𝑗
(𝑙)

𝑗∈𝑁𝑠𝑟𝑐1

< 𝜃)

(7) 

The method compares the edge with the hyper parameter 𝜃, and if the edge has the 

same value or higher of the hyper parameter 𝜃, the edge coefficient is updated. If it is 

less than 𝜃, the edge is deleted. In this equation, 𝑠𝑟𝑐1 is multiplied by the edge coeffi-

cient 𝛼𝑠𝑟𝑐0,𝑠𝑟𝑐1
(𝑙)

 inflowed from 𝑠𝑟𝑐0, and the ratio of 𝛼𝑠𝑟𝑐1,𝑑𝑠𝑡
(𝑙)

 in the edge coefficient 

sum ∑ 𝛼𝑠𝑟𝑐1,𝑗
(𝑙)

𝑗∈�̃�𝑠𝑟𝑐1  is considered. As a result, in the l+1-th layer where the edge as a 

relay is deleted, the influence of l+1-th layer can be reflected to a certain degree. Ad-

ditionally, operating the threshold value in the edge coefficient solves the problem of 

an increased number of edges as the layers are superimposed. 

 

Fig. 5. Update of edge coefficient on Edge Restructured Pooling. 

The above described the flow of methods including proposed Edge Restructured 

Pooling. In this paper, these methods are combined with GCN. In this paper, these 

methods are combined with GCN, but they can also be combined with RGCN. Alt-

hough details are not described, in that case, it is necessary to consider edge embed-

ding in convolution. 

The proposed method uses Edge Restructured Pooling combining with Graph Max 

Pooling after GCN or RGCN. Doing so enables direct value degeneration and interac-

tive conversion such as the pooling on the image. 

 

3.4 Multi-layering 

These three elements (i) GCN, (ii) Graph Max Pooling, and (iii) Edge Restructured 

Pooling are superimposed in order and set as one basic layer. These basic layers are 

set up to multiple layers as shown in Fig. 6. The GCN calculates the convolution. 
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Then the Graph Max Pooling does the pooling. At the end, the Edge Restructured 

Pooling converts the interaction. These operations are repeated multiple times. The 

hyperparameter in each layer is dimension 𝐷  of ℎ𝑖
(𝑙)

 and the edge coefficient's 

threshold value 𝜃. These can be set individually. 

In "Learning", a decoder must be separately designed for a particular task such as 

classification, node prediction, edge prediction, etc., in addition to the encoder shown 

in Fig. 6. The proposed method includes the pooling process inside the encoder. 

Therefore in the case of graph classification, it can directly infer the label from the 

feature vector in the last layer. But, if the method needs to predict a fine-graded object 

such as node prediction or edge prediction, it needs an "up-sampling" in image pro-

cessing or a scheme such as JK-Net. 

 

Fig. 6. Proposed deep graph convolutional network with graph pooling. 

4 Experiments 

4.1 Node prediction 

Edge Restructured Pooling is applied to the node prediction task. Fig. 7 shows a 3-

layer node prediction model. In this experiment, a decoder similar to JK-Net is con-

sidered. This model aggregates the feature vectors in each layer through JK-Net and 

the Layer Aggregator summarizes them. It linear-converts the information and pre-
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dicts the label. "Concat" is used as the Layer Aggregator. "ReLU" is used as the acti-

vation function of GCN. In addition, the layer normalization was performed after 

GCN. This model can be considered to be one in which Graph Max Pooling and Edge 

Restructured Pooling have been added to the JK-Net model. 

 

Fig. 7. Model with Edge Restructured Pooling on node prediction. 

4.2 Setup 

Two benchmark sets (Cora, Citeseer) [28] are used to evaluate Edge Restructured 

Pooling in the node prediction task. Cora is the network for paper reference relation-

ships; it is a dataset where 2,708 papers about machine learning have been classified 

into seven categories (e.g., neural-networks, probabilistic-methods, etc.). The input 

value for each node (paper) is "bag-of-words" and the edge (directed line) indicates 

the reference relationship of the papers. The label of each node denotes the paper's 

category and Cora is the task predicting the category. Similar to Cora, Citeseer is also 

a network for paper reference relationships; it is a dataset where 3,327 papers are 

classified into six categories. The information that the node, edge or label indicates is 

the same as Cora. Table 1 describes the outline of the dataset. 

In this experiment, the number of layers is changed (2~7) and the result is ob-

served. The edge coefficient's threshold value 𝜃(𝑙) (i.e., hyper parameter in each layer) 

is fixed to 0.02 in all layers. For dimension 𝐷(𝑙) of the feature vector, 2 types (16 and 

32) are tested in all layers. For optimization, Adam is used and its learning rate is 

0.005. To prevent over-training, drop out as the model's parameter is applied with 

probability 0.5 and L2 regularization is applied in 0.0005. 
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The both dataset uses 80% samples as training data and 20% samples as test data. 

Because the initial value, etc. of a parameter is given as a random number, the task 

performs an evaluation 10 times, and evaluates the average classification precision of 

the node with the standard deviation. For comparison as a baseline, GCN [14] and JK-

Net [32] are also re-evaluated with same conditions. 

Table 1. Dataset statistics. 

Dataset Nodes Edges Classes Features 

Cora 2708 5729 7 1433 

Citeseer 3312 4715 6 3703 

4.3 Results 

Tables 2 and 3 list the experiment results for Cora and Citeseer. The number in the 

parentheses "( )" next to the model name indicates the dimension number of the fea-

ture vector. For the baseline, "GCN" indicates original GCN implementation [14], 

"JK-Concat" indicates JK-Net implementation [27] which has the Concat aggregator. 

For proposed method, "GCNERP-Concat" indicates GCN based implementation with 

Graph Max Pooling and Edge Restructured Pooling, and Concat aggregator in JK-Net 

decoder is implemented. 

In both Cora and Citeseer, it is apparent that GCN has difficulty achieving high 

precision as the number of layers increases. On the other hand, there is little precision 

degradation in JK-Net and the proposed method as the number of layers increases. 

The proposed method superimposes the three elements – (i) GCN, (ii) Graph Max 

Pooling and (iii) Edge Restructured Pooling, and when it is evaluated with the same 

conditions, it achieves higher precision compared with the method of JK-Net. This 

means that "Information compression by Graph Max Pooling for the convolution 

layer" and "Interaction conversion by Edge Restructured Pooling" have effectively 

worked for multilayer architecture.  

Table 2. Prediction result for Cora dataset. 

Model 2 layers 3 layers 4 layers 5 layers 

Baseline     
GCN (16) 87.83±0.87 87.75±1.14 87.05±1.50 84.52±2.35 

GCN (32) 87.16±1.14 87.66±1.09 87.75±1.24 87.36±1.42 

JK-Concat (16) 87.79±0.88 88.06±1.20 87.90±1.04 87.86±0.92 
JK-Concat (32) 87.21±1.17 87.56±1.21 87.49±1.22 87.51±1.34 

Proposed     

GCNERP-Concat (16) 87.78±1.22 87.77±1.12 87.77±1.39 87.82±1.24 
GCNERP-Concat (32) 88.32±1.24 87.97±1.24 88.17±1.14 87.90±1.25 

Model 6 layers 7 layers   

Baseline     
GCN (16) 79.08±2.63 75.02±4.42   

GCN (32) 84.89±0.48 83.52±1.69   

JK-Concat (16) 87.84±0.36 87.56±0.47   

JK-Concat (32) 87.71±0.25 87.53±0.31   

Proposed     

GCNERP-Concat (16) 87.90±1.23 87.90±1.23   
GCNERP-Concat (32) 88.49±1.33 88.49±1.50   
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Table 3. Prediction result for Citeseer dataset. 

Model 2 layers 3 layers 4 layers 5 layers 

Baseline     

GCN (16) 77.53±1.75 76.57±1.19 75.04±0.95 71.50±3.31 

GCN (32) 77.12±1.88 76.91±1.44 76.64±1.19 75.53±1.51 
JK-Concat (16) 77.18±1.83 77.51±1.84 77.03±1.69 76.88±1.63 

JK-Concat (32) 76.82±1.64 76.94±1.77 77.34±1.40 76.98±1.65 

Proposed     
GCNERP-Concat (16) 77.14±1.52 77.12±1.48 77.39±1.37 77.48±1.38 

GCNERP-Concat (32) 77.32±1.50 77.17±1.37 77.22±1.71 77.39±1.51 

Model 6 layers 7 layers   

Baseline     

GCN (16) 65.61±5.58 61.10±3.92   

GCN (32) 73.65±3.19 73.26±1.75   
JK-Concat (16) 77.15±1.44 77.38±1.55   

JK-Concat (32) 77.07±1.70 77.12±1.58   

Proposed     
GCNERP-Concat (16) 77.39±1.48 77.25±1.58   

GCNERP-Concat (32) 77.60±1.84 77.50±1.51   

 

As a result, it has been confirmed that the proposed method can achieve the highest 

accuracy compared to the conventional method for every number of layers. However, 

in this experiment, the accuracy do not improve according to the number of layers 

(the accuracy hardly changes regardless of the layer). This is considered to be because 

Cora and Citeseer are simple datasets and do not require much interaction with distant 

nodes. Edge Restructured Pooling is a method for accumulating Max-pooling and 

convolution operations while updating the interaction with distant nodes, so if it is 

complex data that needs to be considered also with the influence of distant nodes, the 

effect is considered to be greater. 

In proposed method, the graph in each layer changes while updating the interactive 

nodes by inserting the Edge Restructured Pooling. Table 2 shows the changes of the 

number of edges in each layer when the edge coefficient's threshold is set to 0.02. 

Table 2. Number of edges on each layer. 

Original 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers 

5429 8213 6339 2956 1508 1132 841 

 

The number of edges increases once but it significantly decreases as the layers are 

superimposed. This shows that the influence rate by the edge coefficient is well con-

trolled by manipulating the threshold of 𝛼𝑖,𝑗
(𝑙)

. If the edge coefficient's threshold 𝜃(𝑙) is 

set high, more edges are generated for the threshold. In this case, another problem 

may occur that too many numbers of edges significantly increase the calculation 

amount. In this experiment, the value of the edge coefficient's threshold 𝜃(𝑙) is set 

experimentally, but it does not mean that many edges can be left and some level of 

edge-cut operation may have functioned as regularizing the number of edges.  
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5 Conclusion 

This paper has proposed a new pooling method for graphs, enabling pooling such 

as CNN in a more direct way, to realize multi-layering of the graph convolutional 

network.  

The proposed Edge Restructured Pooling executes edge redrawing in every layer 

and restructures the graph topology. Using it with combined Graph Max Pooling, it 

substituted the interaction conversion function in the CNN's pooling, and solved the 

problem of pooling in the graph. 

In the experiments, the proposed methods were compared and evaluated with the 

conventional GCN and JK-Net using Cora and Citeseer datasets in nodes prediction 

tasks. As a result, GCN shows that the precision decreases as the number of layers 

increases. On the other hand, JK-Net and the proposed method show that precision 

does not decrease even when the number of layers increases. Furthermore, the pro-

posed method achieves better precision than JK-Net. It is proved that "information 

compression by Graph Max Pooling for the convolution layer" and "Interaction con-

version by Edge Restructured Pooling" works effectively for multilayer architecture.  

In the future, we plan to confirm the effect of the proposed method not only on 

simple graphs but also on complex graphs that require interaction with distant nodes. 
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