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Abstract. We propose acMark, a scalable and general generator for
attributed graphs with cluster labels, which has the following advantages:
(i) users can flexibly control the separability of the clusters from the
viewpoints of both the topology and the attributes of graphs; (ii) users
can precisely specify various distributions for node degrees, cluster sizes,
and attribute values; and, (iii) graph generation scales linearly to the
number of edges of generated graphs. Through extensive experiments, we
demonstrate that acMark can generate large-scale graphs with controlled
characteristics as needed by contemporary graph analytics researchers.

Keywords: graph generator · attributed graph · community structure
· graph property · latent factors.

1 Introduction

Graph is a fundamental data structure consisting of nodes and their relation-
ships. Graphs are ubiquitous in many application domains, such as web graph
[7], social networks [8], protein complexes [6], traffic planning [9], computer vi-
sion [13], and gene expressions [3, 15]. Of the rich variety of graph analytics
methods, graph clustering is one of the most widely used techniques in the ma-
chine learning and data mining fields [25].

When we consider real world applications, a node usually has multiple at-
tributes. For example, in a social network a person node may have “age” and
“language” as attributes. Contemporary graph databases support attributed
graphs (also known as property graphs) [5] and there emerges many attributed
graph techniques for clustering and classification tasks [1, 12, 23, 27] and repre-
sentation learning [11, 31].

Researchers often need large-scale attributed graphs with various charac-
teristics and flexible community structure in order to experimentally validate
the effectiveness and efficiency of methods for such tasks. Although there are
many real world attributed graphs available in repositories, most of them do not
have cluster labels. Indeed, SNAP [19], which is the most widely known graph
archive, does not include any attributed graphs with cluster labels. We can find
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attributed graphs with cluster labels in some graph research projects4, however
most of them are small-scale graphs. Turning to large-scale and synthetic graph
generation, the state of the art methods for attributed graphs with clusters can
not specify various types of distributions for node degree, cluster size, or at-
tribute values [4, 17]. As an example, [17] does not allow the user to control the
distribution of cluster size and the attribute values. It only permits to use a
normal distribution.

To address this need in the field, we propose acMark for generating large-
scale attributed graphs with controlled characteristics and flexible community
structure. The major strength of acMark is that it can flexibly control the sepa-
rability of the clusters and specify various types of distribution for node degree,
cluster size, and attribute values. To the best of our knowledge, this is the first
graph generator that can generate attributed graphs with flexible community
structure. The idea of acMark is that, it first generates intermediate data struc-
tures, the latent factors of clusters, and then generates attributed graphs by
using the latent factors. The latent factors are flexibly generated based on any
distributions specified by the user. acMark generates nodes by following the
proportions of the latent factors and then generates edges so as to satisfy the
topology property. acMark also controls the distribution of the cluster sizes and
attribute values. For each node attribute, acMark generates a value by following
two rules: 1) if two nodes belong to the same cluster they should share similar
values, and 2) the values should follow the distribution specified by the user.
acMark is efficient in that the graph generation scales linearly with the edge
size of the output graph. As a community resource, acMark is available as open
source code.5

Our contributions in this paper include a systematic presentation of acMark
(Sections 2 and 3) and a detailed experimental analysis of the scalability and
quality of generated graphs, including an application to clarifying the character-
istics of existing clustering methods (Section 4). We also discuss related state of
the art methods (Section 5). We give concluding remarks in Section 6.

2 Preliminaries

An attributed graph is a triple G = (N,E,X) where N = {1, 2, . . . , n} is a
node set, E = {(i, j)} ⊆ [n] × [n] is an edge set, and X : N → domX1 ×
· · · × domXd

is a function from a node to its d attribute values. The cluster
assignment list obtained from the graph topology and the attributes is expressed
by C ∈ {1, ..., k1}n and CX ∈ {1, ..., k2}n, respectively. Note that current graph
generators only consider C without using CX .

2.1 Graph properties

We highlight two properties that real world graphs typically have: topology
property and attribute property.

4 For example, https://linqs.soe.ucsc.edu
5 https://github.com/seijimaekawa/acMark
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Topology property. Real world graphs have well-known topology properties
[18, 22], which are desirable in synthetically generated graphs: 1) the node de-
grees follow a power-law distribution, and 2) the cluster sizes follow a power-law
distribution. In addition, from the topology aspect, one of the difficulties in
graph generation is that the output graph should satisfy the topology property
while insuring all the edges have two adjacent nodes.

Attribute property. There are two types of attributes, categorical type (e.g.
conference, university, city) and numerical type (e.g. price, timestamp). In real
datasets, it is well known that most numerical attributes follow a normal distri-
bution or power-law distribution. So, graph generators should control the distri-
bution type of attribute values.

Comparisons. State of the art graph generators, such as LFR [16] and ANC [17],
generate graphs by specifying distributions so that they satisfy the above prop-
erties, but only with limited types of distribution. Table 1 shows the comparisons
of our acMark, LFR [16], and ANC [17].

Table 1: Comparisons of different graph generators. PL indicates a power law
distribution and ND indicates a normal distribution. Our method supports arbi-
trary distributions for the node degrees, the cluster sizes, and attribute values.
Actually, the distributions of power law, uniform, and normal are implemented.
NA indicates that there is no support for the property.

Generator Node degree Cluster size Attribute Complexity

LFR [16] PL PL NA O(m)

ANC [17] PL NA R(ND) O(m)

Our method arbitrary arbitrary arbitrary O(m)

3 acMark: attributed graph generator with flexible
community structure

We next present acMark, our generator for attributed graphs with flexible com-
munity structure and real world graph properties. The idea of acMark is that,
instead of generating attributed graphs directly, we first generate intermediate
data structures, the latent factors of clusters, so that we can flexibly generate
attributed graphs with cluster labels. The features of acMark are three-fold.
First, acMark treats the topology clusters and the attribute clusters indepen-
dently and the output graphs are generated by assuming there is a complex
relationship between the topology clusters and the attribute clusters. For in-
stance, the topology and the attributes usually have different number of clusters
and, moreover, a topology cluster may be affected by multiple attribute clus-
ters with different weights. Therefore, acMark controls the cluster separability
by using topology cluster proportions and attribute cluster proportions and also
takes into account such relationship by introducing cluster transfer proportions
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between the topology cluster proportions and the attribute cluster proportions.
We call those three proportions the latent factors of clusters.

Second, acMark generates attributed graphs from the latent factors so that
the generated graphs reflect the cluster proportions, and also the generated
graphs should satisfy the graph properties as we described in Section 2.

Finally, we design acMark to scale linearly to the number of edges of gener-
ated graphs in terms of the time and space complexities.

3.1 Generating Model

We explain the detailed design of acMark by using Figure 1, with parameters
given in Table 2. acMark generates output graphs with cluster labels by using
latent factors: topology cluster proportions U ∈ Rn×k1

+ , attribute cluster pro-

portions V ∈ Rd×k2
+ , and cluster transfer proportions H ∈ Rk1×k2

+ between U
and V . The output graph is expressed with topology cluster assignment list
C, adjacency matrix S, and attribute matrix X. Topology cluster assignment
list C is obtained from topology cluster proportions U by choosing the largest
proportion cluster for each node6. Intuitively, adjacency matrix S and attribute
matrix X can be generated by U and V , respectively. But, we also use U and
H for generating X, so that we simulate the complex relationship between the
topology clusters and the attribute clusters.

The adjacency matrix generation is not obvious, because the output graph
should reflect the topology property while insuring all the edges have two ad-
jacent nodes. Since deciding whether there exists a graph satisfying the give
topology property is NP-complete [2], acMark takes a greedy approach for graph
generation as follows. We sample the candidate of generating edges so as to sat-
isfy the node degree constraint, and then, compute the probability of the edge
existence from the latent factors. Finally, we use a Poisson distribution for con-
firming edges based on the probability. We also carefully design acMark so that
runtime scales linearly with the number of edges.

acMark supports various input parameters as shown in Table 2. The most ba-
sic parameters are the number of nodes and edges to generate, and the distribu-
tions of the node degrees, the cluster sizes7, and the attribute values (continuous
or discrete)8. We normalize all attribute values to [0,1] without the loss of gen-
erality. The ratio of attributes whose values follow the distribution of Bernoulli,
power law, uniform, or normal is controlled by attber, attpow, attuni and attnor,
respectively.9

6 Similarly, attribute cluster assignment list CX is obtained from V .
7 As for the exponents, we choose typical values of real networks: 2 ≤ φd ≤ 3, 1 ≤ φc ≤

2, where φd and φc are the parameters for node degree and cluster size, respectively.
8 Categorical attribute values can be encoded with binary representation.
9 As for the reminder part of the ratio, the attribute values are generated indepen-

dently from the latent factors. In this case, the attribute values follow a randomly se-
lected a distribution from bernoulli, power law, uniform, or normal distributions. The
distribution parameters ω, which consist of φatt min, φatt max, δatt, σatt min, σatt max,
are used for the reminder part.
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Table 2: Description of the graph generator parameters. φ consists of
φd, φc, φV , φH , δ consists of δd, δc, δV , δH , and σ consists of σd, σc, σV , σH . The
subscripts of φ, δ, and σ indicate as follow: d represents node degree, c represents
cluster size, V represents attribute cluster proportions and H represents cluster
transfer proportions.

Input Description

n,m, d ∈ N number of nodes, edges, attributes

k1, k2 ∈ N number of clusters for topology, attributes

α ∈ R+ parameters for balancing inter-edges and intra-edges

β ∈ R+ parameters of separability for attribute cluster proportions

γ ∈ R+ parameters of separability for cluster transfer proportions

φ ∈ R4 parameters of exponent for power law distribution

δ ∈ R4 widths of uniform distribution

σ ∈ R4 deviations of normal distribution

fS , fX transformation for adjacency matrix, attribute matrix

r ∈ N number of iterations for edge construction

attber ∈ R ratio of attributes which takes discrete value

attpow ∈ R ratio of attributes which follow power law distributions

attuni ∈ R ratio of attributes which follow uniform distributions

attnor ∈ R ratio of attributes which follow normal distributions

ω ∈ R∗ parameters of random attributes

Algorithm Algorithm 1 describes the procedure of graph generation. It con-
sists of two phases, latent factors generation phase and graph generation phase.
In the latent factors generation phase, three latent factors are generated by la-
tent factor generation function (line 1,3,4). We take a Bayesian approach for the
latent factor generation described in Algorithm 2. We treat ξ as random vari-
ables and place a prior distribution over it. Let W be the output proportions
of the function. A distribution χ is specified by the user, either of power law,
uniform, or normal (line 1). We generate a dirichlet distribution ξ based on τχ
where τ controls the effect of W ’s columns to the cluster proportions (line 2).
That is, W ’s columns are related with only few clusters when τ is small. We use
a multinomial distribution to produce the output proportion Wi for each row
(line 3-5). We obtain the number of attributes for each distribution based on the
ratio attber, attpow, attuni and attnor given by the user (line 2 in Algorithm 1).
These values are then used as input to decide the size of V (line 3). In the graph
generation phase, we generate the adjacency matrix S (line 8), attribute matrix
X (line 9), and cluster assignment list C (line 5-7). The cluster assignment is
decided by the largest entry in the cluster proportion U for each node (line 6).

Algorithm 3 describes how the adjacency matrix S is generated. The idea is
that we randomly generate candidate edges and then they are confirmed as real
edges if they follow the expected degree proportion of their adjacent nodes. The
detail is as follows. The expected node degree proportions θ is derived from the
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Fig. 1: Illustration of our proposal. Each row of U indicates a cluster proportion
for each node. Each row of V indicates a cluster proportion for each attribute.

distribution specified by the user (line 1). θ′ is the actual node degrees of the
generating graph. It is initialized as zeros (line 2) and its entries θ′i and θ′j are
incremented when a new edge (i, j) is confirmed to be real one (line 16). For
each node i, edges are iteratively generated based on the node degree proportion
θi by Candidate selection step (line 7-10) and Candidate confirmation step (line
12-20). In Candidate selection step, a candidate edge is listed as a pair of i and
randomly chosen node j ∈ M (line 9). In Candidate confirmation step, if the
actual node degrees of the adjacent nodes (i and j) of a candidate edge do not
reach to the expected ones (θ′i and θ′j , line 13), the edge existence is decided by
using a Poisson distribution (line 14). Note there is a possibility that this loop
does not stop, because the adjacency matrix generation is a type of combinatorial
optimization problem. We take a greedy approach: we exit the loop at the user-
specified r iterations (line 5)10. It is our future work to guarantee the theoretical
quality bounds of the generated graphs.

Algorithm 4 describes how the attribute matrix X is generated. The output
X is obtained by concatenatingXUHV and random matrixXran (line 8): we use
Xran for the purpose of generating values independent from clusters. XUHV

is generated by fX(U ,H,V ). That is, 1) we obtain base attribute vectors for
nodes by computing the product of U ,H,V so that two nodes in the same
cluster (reflecting the effect of the topology and attributes) should share similar
values, and then 2) we apply user-specified distribution to the base attribute
vectors so that the attribute values should follow the distribution (line 1).

10 Although we adjust the sum of all the node degrees in θ to be the number of edges m,
some candidate edges may not be generated when the node degrees of the adjacent
nodes exceeds the expected ones, so the actual number of the generated edges tends
to be smaller than the expected number of edges, m.
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Algorithm 1 Graph generation

Require: n,m, d, k1, k2, α, β, γ,φ, δ,σ, fS , fX , r, attber, attpow, attuni, attnor,ω
Ensure: adjacency matrix S, attribute matrix X, cluster assignment list C

# Latent factors generation phase
1: U = latent factor generation(c, n, α,φ, δ,σ)
2: dber, dpow, duni, dnor ← int(d×attber), int(d×attpow), int(d×attuni), int(d×attnor)
3: V = latent factor generation(V ,dber + dpow + duni + dnor,β,φ, δ,σ)
4: H = latent factor generation(H, k1, γ,φ, δ,σ)

# Graph generation phase
5: for i = 0 to n do
6: Ci = argmax(Ui) # cluster assignment
7: end for
8: S = adjacency matrix generation(U ,H,V , r, fS)
9: X = attribute matrix generation(U ,H,V ,d− (dber + dpow + duni + dnor),ω)

Algorithm 2 latent factor generation(type, size, τ,φ, δ,σ)

1: χ = chooseFrom(power law(φtype), uniform(δtype), normal(σtype))
2: ξ = Dirichlet(τχ/

∑
χ)

3: for i = 1 to size do
4: Wi = mutinomial(ξ)
5: end for
6: return W

Algorithm 3 adjacency matrix generation(U ,H,V , r, fS)

1: θ = chooseFrom(power law(φd), uniform(δd), normal(σd))
2: θ′ = [0]n

3: for i = 1 to n do
4: counter = 0
5: while counter < r and θ′i < θi do
6: # Candidate selection
7: M = {}
8: for j = 1 to θi do
9: M = M

⋃
Randint(1, n)

10: end for
11: # Candidate confirmation: (i,j) is a candidate edge
12: for j ∈M do
13: if Sij == 0 and θ′i < θi and θ′j < θj then
14: Sij = fS(U) #e.g. Poisson(< Ui,Uj >))
15: if Sij > 0 then
16: Sji = Sij # since undirected graph
17: (θ′i, θ

′
j) = (θ′i + 1, θ′j + 1)

18: end if
19: end if
20: end for
21: counter = counter + 1
22: end while
23: end for
24: return S
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Algorithm 4 attribute matrix generation(U ,H,V , dran,ω)

1: XUHV = fX(U ,H,V ) (e.g. (power law, uniform, normal)(UHV >) for numeri-
cal values, and Bernoulli(UHV >) for categorical values)

2: for j = 0 to dran do
3: dist = RAND(Bernoulli, powerlaw, uniform, normal)
4: for i = 0 to n do
5: Xran

ij = dist(ω)
6: end for
7: end for
8: X = concatenation(XUHV ,Xran)
9: return X

Complexity We discuss the space/time complexities of acMark. As is typical in
network analytics, we focus on sparse graphs [22] as real-world graphs are often
sparse. On the sparse condition, the mean of the node degree can be treated as
a constant, m ∝ n, so m is considered to be a much smaller value than n2.

Space complexity. The largest concern is the adjacency matrix S since the size
of S could be as large as n2. Hence, we use sparse representation for S, such
as an adjacency list, with size O(m). The size of an attribute matrix X is nd.
We can omit the size of the latent factors because k1, k2 � n, d. Therefore, the
space complexity is O(m+ nd),

Time complexity. We analyze the time complexity of the latent factor genera-
tion, the adjacency matrix generation, and the attribute matrix generation, re-
spectively. First, the complexity for generating the topology cluster proportions,
the attribute cluster proportions, and cluster transfer proportions is O(nk1 +
dk2 + k1k2) based on their matrix sizes. Second, the adjacency matrix gener-
ation consists of the candidate selection step and the candidate confirmation
step. In the candidate selection step, candidates are chosen based on the node
degree. In candidate confirmation step, we calculate the edge probability whose
complexity is O(k1). These two steps are executed for each node so they require
O(nk1rθAvg), where r is the number of iterations for edge generation. Further,
r = c× k1 where c is constant and m = nθAvg, that is, the complexity becomes
O(mk21). Finally, in the attribute matrix generation, the complexity is O(ndk)
where k = min(k1, k2). Therefore, the total time complexity is O(mk21 + ndk).

4 Experiments

We next describe an experimental study of acMark. Our goal in the experiments
is to answer the following questions:

Q1 Does acMark support users to control the distributions of graph properties?
Q2 How well does acMark scale?
Q3 Does acMark support users to flexibly control the separability of clusters?
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Q4 Can we use acMark to clarify the characteristics of contemporary clustering
methods?

We use a power law distribution (φd = 3, φc = 2) for node degrees and cluster
sizes as a default setting. acMark is implemented in Python3, and, as noted in
Section 1, is made available as open source. The experiments are operated on 64
Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz with 32GB memory.

4.1 Q1: Visualization with controlled graph properties

To confirm that acMark supports the control of the distributions of graph prop-
erties, we visualize the distributions of the generated graphs.

Graphs with various topology properties. We visualize the generated graphs
with various cluster sizes (Figure 2) and with various node degrees (Figure 3a, 3c)11.
Figure 3b, 3d depict the histograms of the node degree distributions. These fig-
ures indicate that the generated graphs follow the graph properties specified by
the user.

(a) The cluster sizes follow a power law dis-
tribution (φc = 2).

(b) The cluster sizes follow a normal dis-
tribution (σc = 0.1).

Fig. 2: Visualization of graphs with two different cluster size distributions gen-
erated by acMark. The node colors represent clusters. These graphs have 1000
nodes and about 4000 edges. The node degrees follow a power law distribution
(φd = 3).

Graphs with various attribute properties. We analyze the attribute values
in the generated graphs. Figure 4 depicts the histograms of a single attribute
and 2-D plots of the values of two attributes. Figure 4a, 4b depict the statistics
of attribute values that are generated without specifying distributions. Figure 4a
indicates that the values are clearly separated into clusters and we clearly observe
base attribute vectors in Figure 4b. In contrast, Figure 4c, 4d depict the results
with specifying a normal distribution to the attribute values. We observe that
the values actually follow a normal distribution.

11 We utilize Gephi for the visualization. Note: Gephi is limited to place the vertices
based only on the graph topology and ignores the effect of the attributes.
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Fig. 3: Visualization of graphs with two node degree distributions generated by
acMark. The node colors represent clusters. These graphs have 1000 nodes and
about 4000 edges. The cluster sizes follow a power law distribution (φc = 2).
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Fig. 4: Histograms and 2-D plots of attribute values. These graphs have 1000
nodes and about 4000 edges. The cluster sizes follow a power law distribution
(φc = 2). In Figure 4c, 4d, mean = 1 and deviation is randomly chosen from
the range of 0.1 – 0.3.

4.2 Q2: Scalability of graph generation

To investigate the scalability of acMark, we demonstrate how the runtime and
memory consumption vary for various values of parameters. The default setting
of the parameters is as follows: d = 100, k1 = 10, k2 = 10, α = 1/k1, σd =
0.1, σc = 0.1, r = 10 ∗ k1, attber = 0.0, attpow = 0.4, attuni = 0.1, attnor = 0.4. m
is chosen from {104, 105, 106, 107} and n = m/10 for keeping the sparse condition
of generating graphs. Figure 5a indicates that the runtime actually scales linearly
to the number of edges. The memory size of S also scales linearly to the number
of edges in Figure 5b. Figure 5c indicates that the number of the actual edges is
smaller than the input parameter m: this result follows the discussion we made
in footnote 8. As a whole, these experiments demonstrate that both time and
space complexities are linear to m, the number of edges.
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Fig. 5: Scalability experiments against the number of edges. The other parame-
ters are set as follow: n = m/10, d = 100, k1 = 10, k2 = 10.

4.3 Q3: Separability of clusters

We next study the extent to which acMark supports flexible control of the sepa-
rability of clusters in terms of the topology and the attributes. First, we visualize
the topology structure with various values of α and the attribute values with
various combinations of β and γ. Second, we investigate structural measures
with various graph sizes and with various values of α.

Visualization. Figure 6 shows that the ratio of intra-edges is large when α
is small. This is one of the features of dirichlet distribution: clusters are more
separated if α is set at a smaller value. We also conduct experiments for β and

(a) α = 1.0. (b) α = 0.1

Fig. 6: Separability of clusters w.r.t. the topology when n = 1000,m = 4000, k1 =
5. The node colors represent the clusters.

γ. Fig 7 shows how those parameters can control the separability of attributes.
The clusters are more overlapped when β and γ are set at larger values (See
Fig 7(a)) by following the feature of dirichlet distribution.

Structural measures. We investigate how modularity [21], average cluster co-
efficient, and graph diameter12 vary with various values of α. These measures
are often used to clarify the characteristics of graphs. Modularity is a measure

12 Diameters can not be calculated in unconnected graphs so we use the largest diameter
among connected components as the diameter of the whole graph.
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Fig. 7: Separability of clusters w.r.t. attributes when n = 1000, k1 = 5. The node
colors represent the clusters.

for topology: the score is high when clusters are separated with each other.
Figure 8 shows the average and deviation of the measures, where m is cho-
sen from {5000, 10000, 15000, 20000}, n is fixed at 1000, and α is chosen from
{0.1, 0.2, 0.3}. For all measures, the scores tend to be large when α is small, that
is, separability is high. Graphs with high separability have obviously separated
clusters so modularity should be high. The separated clusters consist of densely
connected edges and, in this case, the average cluster co-efficient is high. As
for the diameter, the small value of α causes fewer number of inter-edges, so
the diameter becomes large when α is small. Overall, these results validate that
acMark flexibly controls the separability of clusters.
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Fig. 8: Modularity, average cluster co-efficient, and diameter with various num-
bers of edges and various values of α. The number of nodes is fixed at 1000. The
bars around the points (average) represent the standard deviations of five trials.

4.4 Q4: Applying clustering methods to generated graphs

Finally, we show that acMark can clarify the characteristics of clustering meth-
ods. We apply three types of clustering methods to generated graphs, an at-
tributed graph clustering method which captures both effects of the topol-
ogy and attributes (NAGC [20]), a topology-based graph clustering method
(METIS [14]), and an attribute-based clustering method (kmeans).

We adopt several measures for evaluating clustering methods, modularity,
entropy, NMI (Normalized Mutual Information), and ARI (Adjusted Rand In-
dex) [29]. Entropy is a well-known measure for the diversity of attribute values.
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NMI and ARI are popular measures for evaluating clustering quality with cluster
labels.

The input parameters of the datasets we generated are described in Table 3.
The results of the clustering methods may depend on initial values so we conduct
five restarts for each experiment. We report the results of the average and the
standard deviations.

Table 3: Generated datasets and their input parameters for the clustering ex-
periments

ID n m d k1 k2 α β γ attpow attuni attnor

acMark1 1000 4000 10 5 5 0.2 10 1 0.0 0.0 0.9

acMark2 1000 4000 10 5 5 0.2 10 1 0.1 0.1 0.1

acMark3 1000 4000 10 5 5 0.1 10 1 0.1 0.1 0.1

Table 4 shows the clustering quality of the methods. The true clusters of
acMark1 should highly depend on the attributes since most of the attributes
follow normal distributions (See high value in attnor column). The results show
that NAGC and kmeans perform better than METIS in terms of NMI and ARI,
so acMark clarifies these methods take the effect of the attribute values into
community structure. Many attributes are independent from the community
structure in acMark2 and acMark3 since 70% (= 1 - attpow - attuni - attnor) of
those attributes are randomly generated. Therefore, on acMark2, the attributes
are less dependent on the community structure than on acMark1. The result of
NAGC is kept high in terms of NMI and ARI while the result of kmeans largely
descends. This implies that NAGC well captures both effects of the topology
and the attributes. On acMark3, the clusters are more separated than acMark2
because the separability parameter α is smaller. Actually, the measurements of
all methods are better than those on acMark2.

According to these results, we confirm that acMark controls the characteris-
tics of generated graphs and it is useful to clarify the characteristics of clustering
methods.

5 Related work

There is a rich literature on graph generation (e.g., [2, 10, 18]). In this section
we review the most closely related methods to our proposal.

Generator for graphs with community structure. The GN-benchmark [10]
is the first graph generator for evaluating community mining algorithms. It only
supports 128 nodes and four groups. The LFR-benchmark [16] is the expan-
sion of the GN-benchmark and it is a scalable graph generator. It assumes that
the distributions of node degrees and community sizes should follow power-law
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Table 4: The average and standard deviation (in parenthesis) of clustering qual-
ity. Oracle represents the evaluation by using the ground truth.

Dataset Method NMI ARI Modularity Entropy

acMark1 Oracle 1.000(0.000) 1.000(0.000) 0.571(0.030) −0.787(0.045)
m = 4000 NAGC 0.751(0.000) 0.805(0.002) 0.579(0.000) −0.622(0.000)
α = 0.2 METIS 0.553(0.043) 0.512(0.060) 0.534(0.033) −0.588(0.068)
attnor = 0.9 kmeans 0.620(0.028) 0.547(0.041) 0.348(0.048) −0.768(0.062)

acMark2 Oracle 1.000(0.000) 1.000(0.000) 0.495(0.094) −0.450(0.147)
m = 4000 NAGC 0.662(0.008) 0.741(0.001) 0.524(0.002) −0.320(0.006)
α = 0.2 METIS 0.475(0.080) 0.393(0.135) 0.497(0.046) −0.268(0.085)
attnor = 0.1 kmeans 0.321(0.063) 0.209(0.056) 0.167(0.026) −0.394(0.047)

acMark3 Oracle 1.000(0.000) 1.000(0.000) 0.653(0.021) −0.412(0.048)
m = 4000 NAGC 0.834(0.014) 0.890(0.010) 0.599(0.005) −0.321(0.008)
α = 0.1 METIS 0.669(0.044) 0.606(0.053) 0.611(0.030) −0.290(0.046)
attnor = 0.1 kmeans 0.406(0.099) 0.278(0.088) 0.182(0.052) −0.346(0.063)

distributions. It is extended to generate synthetic graphs with overlapping com-
munities [26] and hierarchical communities [28]. However, they do not support
node attributes.

Generator for graphs with community structure and node attributes.
There are few generators which take both community structure and node at-
tributes into account. ANC [17] is a generator for attributed graphs with com-
munity structure. However, the community structure of generated graphs only
depends on the attributes, so the user can not explicitly control community
sizes and the effect of the topology to community structure. ANC is extended
to generate dynamic graphs [4], it generates dynamic attributed networks with
community structure, which follow the properties of real-world networks.

Recent graph generators. Although many graph generation methods have
been developed, they are not capable of preserving important properties in real-
world graphs. Also, they are not suitable for generating large-scale graphs due to
their large space and time complexities. In order to preserve multiple properties
of real-world graphs, there are two recent work as follows.

GraphRNN. Jiaxuan et al. [30] propose GraphRNN that captures the non-unique
nature and the non-local dependencies in real world graphs. GraphRNN uses
a scalable generative model for generating graphs. That is, GraphRNN learns
how to generate graphs by training a representative set of graphs by leveraging
RNN and generates graphs. The drawback is that it does not generate arbitrary
graphs by controlling the types of distributions and also it does not directly treat
community structure.

EvoGraph. Himchan et al. [24] presents EvoGraph, which is capable of upscaling
given graphs, while preserving the major properties of the original graphs. The
rationale of EvoGraph is that new edges are generated and attached to the
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original graph based on the preferential attachment mechanism in an effective
and efficient way. However, an original graph is required as an input, so it is
hard to control the graph properties as the user needs.

6 Concluding remarks

We proposed acMark, a scalable and general generator for attributed graphs with
flexible community structure. The novel features of our method are threefold: 1)
acMark flexibly controls the cluster separability between the topology and the
attributes, 2) acMark supports various distributions for node degrees, cluster
sizes and attribute values, and 3) acMark is a scalable generator: it scales linearly
to the number of edges. We conducted extensive experiments which confirm these
features. Throughout the experiments, we validated that acMark can generate
massive graphs with various characteristics as the user wants.

Interesting directions for future work include extending acMark to generate
directed graphs, overlapping communities, and hierarchical communities. Also
it is an interesting topic to consider the graph generation problem as an inverse
of graph clustering problem. We can design a single framework that treats both
directions of the graph generation and graph clustering.
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