
Graph Embeddings for Enrichment of
Historical Data?

J. Baas1[0000−0001−8689−8824], M. M. Dastani1[0000−0002−4641−4087], and
A. J. Feelders1[0000−0003−4525−1949]

Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, Netherlands

Abstract. In this work-in-progress paper we describe our method of
combining expert knowledge and RDF graph embeddings to solve for
specific downstream tasks such as entity resolution. We show that effi-
ciency gains can be made by choosing the correct gradient descent algo-
rithm and that expert input can lead to the desired results.

Keywords: Graph Embedding · RDF · GloVe · Entity Resolution ·
Digital Humanities

1 Introduction

The internet has seen the emergence of numerous knowledge bases modeled
as knowledge graphs of various sizes and structures, collectively called Linked

Open Data. The combination of multiple RDF data sources and extracting their
combined knowledge is the purpose of the Golden Agents [3] project. Via a multi-
agent system the complexity of using multiple sources to answer a single query
is hidden from the user. The long term objective of our work is to provide an
enrichment to query results by using machine learning on knowledge graphs. Ex-
amples of query enrichment can vary from providing suggestions to users while
writing queries to linking entities as likely duplicates or adding potentially rele-
vant information to an otherwise empty result. Most data mining and machine
learning methods, however, require data to be in propositional form with a vector
of values associated with each data point. A knowledge graph, therefore, first has
to be converted to this propositional form before these methods can be applied.
Thanks to advances in their Natural Language Processing (NLP) counterparts,
many techniques adapted from NLP have become available to assist with this
particular problem. Many though, are designed for the creation of general pur-
pose embeddings without the inclusion of expert opinion regarding a particular
application.

In the context of the Golden Agents project, we are interested in application
specific tasks such as entity resolution by using historical expert knowledge in
building application specific embeddings. In general, we would like to use off
the shelf machine learning algorithms to solve tasks such as entity resolution.

? Supported by the Netherlands Organisation for Scientific Research.

2 J. Baas et al.

However, since we are dealing with RDF graphs, in which edges have a specific
semantic content, we would like to leverage this extra information with domain
specific expert knowledge. This confronts us with a set of problems:

1. Which node neighborhood creation strategies work best for certain historical
data sets with a specific graph structure.

2. Can the embedding process be made more efficient so embeddings can be
created on demand.

3. Can a domain expert feed information to the system as to affect the resulting
embedding in a predictable fashion.

In order to address these problems we generate a context (neighborhood) for
each node in the RDF graph. The context will take into account the importance
of the relations with the neighboring nodes. This importance, which is repre-
sented by a weight, is provided by domain experts. We experiment with multiple
strategies of creating neighborhoods, exploiting properties of RDF graphs such
as the fact that some nodes can only have incoming edges. These neighborhoods
are then used as input to embed each node in a d-dimensional space, where d
is chosen by the embedding designer, using an algorithm originally designed for
embedding words. We also experiment with different stochastic gradient descent
algorithms to see which performs best on our problem set.

We show that the neighborhood creation strategy can have a significant im-
pact on how an embedding can be used for an application specific purpose such
as entity resolution. We demonstrate that a specific choice of weights can give
desired outcomes in the structure of an embedding. In the realm of embedding
optimization, we show that choosing the right type of stochastic gradient de-
scent algorithm can give large improvements in convergence time over the type
that is usually mentioned in literature. Additionally, a small improvement in the
quality of fit can sometimes be obtained.

In this work-in-progress paper we describe in section 2 previous work that
has inspired our approach. In section 3 we discuss the historical data that has
been made available to us in the Golden Agents project. Then, in section 4, we
explain our approach in general terms and how subsequently it differs from the
related work. The process of deriving features from an RDF graph is explained
in detail in section 5. Section 6 describes how nodes are embedded using the
features described in the section 5 and also describes some improvements on the
gradient descent optimization process. We explain the details of implementation
in section 7. Section 8 shows some of our preliminary results. Finally, in section
9 we give future research directions.

2 Related Work

Since Word2Vec [10] came on the scene, it has inspired many techniques that
leverage the same technology to embed objects other than words. Notable ex-
amples of this work are Deepwalk [14] and Node2Vec [8]. Both Deepwalk and
Node2Vec allow for the creation of derived features for nodes in a graph by using

Graph Embeddings for Enrichment of Historical Data 3

a random walker to generate a context. In the case of Deepwalk, a uniform ran-
dom walker is used, while Node2Vec extends this idea and introduces a random
walker that can be either biased towards local neighborhoods or more global
graph structures. These features are then usually embedded in a space using the
Skip-gram algorithm in combination with negative sampling [11]. Additionally,
in the sphere of Linked Open Data, RDF2Vec [16] also adapts natural language
models to create a set of token sequences (a sentence analogue) using graph
walks, embedding them in a similar fashion.

In contrast to [14,8,16], Cochez et al. [4] uses GloVe [13] instead of the Skip-
gram or Continuous Bag-of-Words (CBOW) algorithms. The node features are
also derived using graph walks, in this case generating an approximation of the
personalized PageRank for each node. Furthermore, many different strategies
based on network statistics such as predicate frequencies are applied in creating
biases in these graph walks.

With regard to applications of embeddings to solve the problem of entity
resolution, the works of Bordes et al. [2] and Nickel et al. [12] are particularly
relevant. Bordes et al. [2] uses pre-existing EqualTo relations in the graph and
uses this information to learn an embedding. The query of whether two entities
x and y are the same then amounts to asking how likely it is that the triple x
EqualTo y holds. Nickel et al. [12] uses only the information in the embedding
to decide if the entities x and y are equal by leveraging the similarity between
their vector representations, with the similarity between entities x and y defined
as the heat kernel k(x, y) = e−||x−y||

2
2/δ, where δ is a user-given constant and

||x− y||22 is the squared euclidean distance between x and y.

3 Data Sets

Historical data have their own peculiarities and difficulties, such as the fact
that often information is approximate: we do not know when someone was born
exactly and there exist many variations of how to write down a certain name.
Over time errors accumulate while historians process the data, such as duplicate
records for convenient searching in a file system being faithfully copied and
digitised. This can make it much harder to extract information. Often some
process of entity resolution is necessary first. In this work we use two historical
data sets. Each describes a different aspect of the Dutch Golden Age:

– The City Archives of Amsterdam is a massive collection of registers, acts
and books from the 16th century up to modern times1. The original data are
in the form of handwritten books that have been scanned and digitised by
hand. Often more information is stored in the original form than was tran-
scribed. Fully digitising all information is an ongoing process, often done
by volunteers. For this project we made use of a subset collected from three
different registers: Burial, Prenuptial Marriage and Baptism. The burial reg-
ister does not describe who was buried where, but simply records the act of

1 https://archief.amsterdam/indexen

4 J. Baas et al.

someone declaring a deceased person. To this end, it mentions the date and
place of declaration and references two persons, one of whom is dead. Sadly,
it does not tell us which one of the two has died. The prenuptial marriage
records tell us the church, religion and names of those who are planning to
get married. It also mentions names of previous marriages if applicable. The
baptism register mentions the place and date of where a child was baptised.
It does not tell us the name of the child, only the names of the father and
mother. Lastly the above records were combined with a subset from the
Ecartico 2 data set, which is a comprehensive collection of biographical data
from more well known people from the Dutch golden age. Figure 1 shows the
graph representations of a record in each register. Note that these records
can be linked to each other by sharing a literal node, in this case a name or
date field, as shown in figure 2.

R1

P1a

P1b

Claesz, Jan

Crijnen, Aeltje

07/09/1645

mentions

mentions

date

name

name

(a) Burial Record

R2

P2a

P2b

Claesz, Jan

Crijnen, Aeltje

01/05/1646

P2c

P2d

groom

bride

date

name

name

prevHusband

prevWife

(b) Prenuptial Marriage Record

R3

P3a

P3b

Claesz, Jan

Crijnen, Aeltje

19/11/1650

father

mother

date

name

name

(c) Baptism Record

R4

P4a

P4b

Claes, Jan

Claesz, Jan

Crijnen, Aeltje

01/06/1646

groom

bride

date

name

altName

name

(d) Ecartico Marriage Record

Fig. 1. Each registry in the Amsterdam City Archives has a number of records
(R1, . . . , Rn), all of which are associated with two or more persons (P1a, . . . , P1z).
These persons can have attributes for themselves, in this example we only use their
full name. Dotted lines are optional relationships.

2 http://www.vondel.humanities.uva.nl/ecartico

Graph Embeddings for Enrichment of Historical Data 5

R1

P1a

P1b

Claesz, Jan

Crijnen, Aeltje

P2a

P2b

R2

groom

bride

mentions

mentions

name

name

name

name

Fig. 2. Records can be linked together through literal nodes. In the above example a
record in the prenuptial marriage registry is linked to a record in the burial registry.

– Onstage3 is a data set about Amsterdams most prominent public theatre
venue: the Schouwburg. It contains information from the year 1638 until to-
day about plays, their creators and when these plays were shown. Additional
information such as daily revenues is available but not used. Figure 3 shows
a slightly simplified graph representation of the Onstage data set. Note that
using different traversing strategies the neighborhood of, say, an author can
in- or exclude the language of plays he has written. This has an effect on
the resulting embedding, for instance when a user wants to make sure the
language of an author is taken into consideration. In the case of Onstage we
are not as interested in entity resolution as there are no duplicates present.
Instead, we are interested in exploring the effects of different weights in the
node neighborhood creation process.

S1

07/05/1648

P1

C1P2 Vondel, Joost van den

01/01/1647

Leeuwendalersnl

workPerformed

date headline

dateCreated

language

creatorisBasedOn

name

Fig. 3. Onstage general structure. Nodes labeled as Si represent days on which certain
works were performed. Nodes labeled as Pi are plays while those labeled as Ci represent
authors.

In the official RDF specification, multiple literal nodes with the same value
can coexist. This can be detrimental to the creation of network neighborhoods

3 http://www.vondel.humanities.uva.nl/onstage

6 J. Baas et al.

when literal nodes are the sole way of interconnecting the entities we are inter-
ested in. For this reason we slightly deviate from the standard and only allow
one literal node to exist for each unique value. This also has the side effect of
greatly reducing the size of the graph in many cases.

4 Approach

Inspired by the positive results reported by Pennington et al. [13] of GloVe over
Word2Vec, our approach is to leverage the knowledge of expert historians to
tailor an embedding of an RDF graph for application specific purposes such
as entity resolution. An RDF graph can be viewed as a set of triples of the
form 〈subject, predicate, object〉, where subject and object are represented by
nodes in the graph and the predicate is represented by the edge between these
nodes. The interpretation of such a triple is that the elements represented by
the object and subject are related to each other by the relation represented by
the predicate. Therefore we allow a user to provide the system with a list of
predicates and associated weights. These weights represent the experts’ opinion
on the importance of predicates for some specific task. For example, in the
case of entity disambiguation, the expert could determine that the name of a
person is more important in relating him/her to another person than, say, a
birth date, which can be inaccurate in historical sources. Like Cochez et al.
we use an adaptation of the Bookmark Coloring Algorithm to generate derived
features for each node in an RDF graph. However, due to the application specific
nature and unique properties of each RDF graph, we experiment with different
graph walk strategies in combination with the supplied weights given by an
expert instead based on graph statistics. Furthermore we have developed our
own code for calculating the embedding vectors, which allowed us to experiment
with different types of stochastic gradient descent in order to determine if better
minimum can be found and/or in fewer iterations.

5 Generating Network Neighborhoods

Let G = (V,E) be a given RDF graph. As in Node2Vec, we define NS(i) ⊂ V
as the neighborhood of node i ∈ V generated through a neighborhood sampling
strategy S. The objective is to create an embedding of size |V |×d where d is the
(user defined) number of dimensions. In order to generate derived features for
the nodes in an RDF graph we create a neighborhood for each node in the graph.
This neighborhood consists of a set of nodes that can be reached from a certain
starting node. The value given to each node in the neighborhood depends on
the distance from the starting node and the network structure. Having multiple
paths to the same node will increase this value. The output of the neighbor-
hood generation algorithm is an (ideally sparse) co-occurrence matrix X of size
|V | × |V | where Xij is a non-zero positive real number iff node j occurs in the
neighborhood of node i. The co-occurrence matrix X is then used as input for
the GloVe algorithm.

Graph Embeddings for Enrichment of Historical Data 7

The node neighborhoods themselves are generated using the bookmark col-
oring algorithm (BCA) [1]. A useful feature of BCA which distinguishes it from
random walks is that the former is not random, which helps to reduce the num-
ber of random components in the system. The general idea of BCA is to consider
the neighborhood of a node as an approximation of the personalized PageRank
for that node. A useful analogy is imagining dropping a unit amount of paint on
a given starting node. A fraction α remains on the node and the fraction 1− α
is distributed among neighboring nodes using one of the strategies mentioned
below. When after a certain point the amount of paint falls under ε the paint is
no longer distributed. This means that even in the case of loops, the algorithm
will eventually terminate after running out of paint. The user can tweak ε in
order to get a smaller or larger neighborhood. The distance weight can be ad-
justed with α. Values in the range [10−1, 10−3] for α and [10−2, 10−4] for ε seem
to work best for various applications. Having a very small ε can cause X to be
too dense, which causes memory issues.

The RDF graph can be traversed in multiple ways to generate different neigh-
borhoods depending on the wishes of the user and underlying structure of the
graph. For some graphs, such as the Amsterdam City Archives graph, literal
nodes, such as those representing names, act as hubs linking together concepts
from multiple sub-graphs that represent for example different data sets. In other
cases the edges are distributed much more equally among nodes. We have ex-
perimented with three different strategies of neighborhood sampling:

– Undirected Weighted: Ignore the edge directions and distribute paint based
only on the weights given by the domain expert. This means that all incom-
ing and outgoing edges are considered with the exception of the edge that
leads to the previous node. This can be useful if the direction of edges in
the network prevents certain important nodes from being visited from some
starting nodes.

– Directed Weighted: Distribute paint among all outgoing edges according to
weights given by a domain expert. Sometimes this process is reversed by,
for instance, reversing all edges in the graph and distributing paint again.
This creates a node neighborhood that contains all nodes leading up to and
out of a starting node up to a certain distance. The reasoning behind this
is that it is analogous to having a symmetric window when creating word
embeddings [4].

– Directed Weighted Literal: This strategy behaves the same as directed weighted,
however on literal nodes it follows incoming edges of the same type used for
arriving on the literal node. This can be useful when multiple edges of differ-
ent types are pointing to the same literal node. The intuition is that when
arriving on a node representing a date via a dateOfBirth relationship we are
only interested in other nodes that also use that same relationship.

8 J. Baas et al.

6 Embedding Optimization

For generating the final embedding we make use of the GloVe [13] algorithm.
Originally designed for natural language processing, it has also been used by
Michael Cochez et al. [4] for embedding nodes of an RDF graph.

GloVe uses equation 1 as its loss function. Each node is associated with two
vectors w and w̄ representing coordinates in the embedding, and two bias terms
b and b̄. The vector and bias term w and b are used when the node is evaluated
in its context, while w̄ and b̄ are used when a node is evaluated as the context
of another node. Then, for some combination of nodes i and j, the similarity
between vectors wi and w̄j is measured by their dot product and compared to
the observed co-occurrence value Xij . The function f(.) acts to curb the influence
of high values for Xij , diminishes the effect of making mistakes for low values of
Xij and as a safeguard for when Xij = 0. Finally, the output vector for a given
node is w+w̄

2 . The bias terms b, b̄ are dropped and not used.

J =

|V |∑
i

NS(i)∑
j

f(Xij)(w
T
i w̄j + bi + b̄j − logXij)

2 (1)

For minimizing J , we have experimented with several gradient descent algo-
rithms in order to determine which one works best in the setting where we use
GloVe in conjunction with a co-occurrence matrix created from our historical
RDF data:

– Adagrad: [5] This algorithm is used by Pennington et al. [13] to train GloVe
for word embeddings. Adagrad adapts the learning rate for each parameter
by dividing the learning rate by the sum of squares of the past gradients. It
does, however, suffer from the fact that the accumulated gradients cause the
learning rate to shrink each step which can inhibit further learning.

– Adadelta: [17] An extension of Adagrad aiming to reduce the problem of
the monotonically decreasing learning rate. Instead (among other things) it
stores a decaying average of previous squared gradients.

– Adam: [9] Like Adadelta, Adam stores a decaying average of the previous
squared gradients. However, it also keeps a decaying average of the past
gradients. These act as approximations of the second and first moments of
the gradients respectively. In our experiments Adam yielded unstable be-
havior. This could somewhat be corrected by tweaking the ε parameter. The
comparison below uses ε = 10−8 as mentioned in the original paper.

– AMSgrad: [15] The last method we used, AMSgrad adapts the first moment
to use the maximum of all past gradients instead of a decaying average.
The intuition behind this is that large and informative gradients occur only
rarely, and are otherwise ’forgotten’ by the decaying average.

Each algorithm is stopped as soon as the difference between iterations falls below
10−5. As shown in figure 4, our experiments show that AMSgrad performs best
on both the Amsterdam City Archives and Onstage, converging in the least

Graph Embeddings for Enrichment of Historical Data 9

time and to the best or equally good minimum. A possible explanation for this
is that only certain combinations (i, j) of nodes are informative and have a large
gradient. AMSgrad is best able to exploit this situation by storing these large
gradients without decaying them over time. Adam has issues converging in our
case. Preliminary tests have shown that setting Adams ε parameter to 0.1 or 1
can have beneficial effects. In the comparison, all algorithms use their default
parameters as defined by their respective papers.

0.00

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400
iteration

lo
ss

Onstage

0.00

0.01

0.02

0.03

0.04

0.05

0 100 200 300
iteration

lo
ss

Amsterdam City Archives

adadelta adam adagrad amsgrad

Fig. 4. A comparison of stochastic gradient descent methods. The Y axis is the nor-
malized loss function J (divided by the number of co-occurrences) and the X axis is
the number of iterations. Note that, in this case, the best performing in both cases is
AMSgrad. Which converges in fewer iterations with equal or minimum cost.

These results are encouraging enough that it could be worth the effort to use
AMSgrad instead of Adagrad in other applications when creating embeddings
from graphs.

10 J. Baas et al.

7 Implementation Details

The entire system has been written in Java as this makes it much easier to
integrate into the Java based multi-agent system of the Golden Agents project.

Several libraries are used for specific tasks: we use Jena4 for loading in the
RDF data, and we use Grph5 (high performance graph library) for represent-
ing the graph in memory as sequential integers which can be stored densely in
memory. Grph also allows for pre-processing of the graph for generating a node-
neighbor data structure beforehand which can be reused while iterating over each
node in the graph. The independent nature of doing the graph walks without
changing the underlying graph also allows us to run many walks in parallel.

The stochastic gradient descent algorithms are all written in pure Java and
is based on the C code written at Stanford6. The batch size is 1, so at each co-
occurrence we encounter the parameters are updated. Since each co-occurrence
only updates a tiny fraction of all available parameters the issue of collisions
is minimized and grows less likely as the number of nodes increases. This step
can also be done in parallel, with each thread handling a random sample of the
nodes each iteration. This random sampling stabilizes the output of the code as
it counteracts the tendency to end up in local minima due to the randomized
initial starting conditions.

Finally, the last optional step of performing PCA to reduce the number of
dimensions in the embedding is done using netlib7, a Java wrapper for low-level
vector and matrix operations. We perform PCA in the end to reduce the size of
the resulting embedding without losing too much information. We default to the
minimum number of principal components that are necessary to explain 95% of
the variance. At times this can lead to a reduction of 200 to just 4 dimensions,
which somewhat offsets the need to choose the right number of dimensions d
beforehand.

All our code is open source and available at our github repository8.

8 Preliminary Results

With the help of an embedding visualization tool9 we can show some of our
preliminary results. Figure 5 shows how we can improve the clustering of persons
in the Amsterdam City Archives by using the right graph walk strategy for the
problem. Since the Amsterdam City Archives is an agglomeration of multiple
data sets which are interconnected via literal nodes, the Undirected strategy
generates more representative neighborhoods by traversing more of the graph

4 https://jena.apache.org
5 http://www.i3s.unice.fr/ hogie/software/index.php
6 https://github.com/stanfordnlp/GloVe
7 https://github.com/fommil/netlib-java
8 https://github.com/Jurian/graph-embeddings
9 https://projector.tensorflow.org

Graph Embeddings for Enrichment of Historical Data 11

while at the same time not stopping when it encounters a node with solely
outgoing or incoming edges at one of the record-nodes.

Figure 6 shows how with the choice of weights we are able to influence an em-
bedding of the Onstage data set. For example, say a domain expert is interested
in an embedding which emphasises the language of a play, in this case they can
easily increase the weight associated with that relationship as shown in table 1.
With the increased weight on language it becomes much easier to cluster plays
based on this information. In order to check whether plays have indeed clustered
together based on language we apply a model-based clustering algorithm [6] on
the minimum number of principal components necessary to explain 95% of the
variance. This results in 9 and 4 components for identical weights and a high
language weight respectively. Tables 2 and 3 show the results of a discriminant
analysis [7] of plays with the class label being the language of a play. This shows
that we can achieve predictable results from a certain choice of weights.

(a) Directed (b) Undirected

Fig. 5. PCA analysis of a subset of a particularly frequent name in the Amsterdam City
Archives: Jan Jansen. Each data point represents the mention of a person named Jan
Jansen in some record of the archives. Pink points are from the baptism archive, cyan
points are from the burial archive, while red points are from the prenuptial marriage
archive. The three pairs of cyan points on the right are known duplicates in the burial
archives. Note how they are much better distinguished using the undirected graph
walk strategy. Both directed strategies proved insufficient for generating overlapping
contexts. In this example all weights for relations are set to 1.

12 J. Baas et al.

(a) No preference for any relation type (b) Preference for language of a play

Fig. 6. PCA analysis of plays in the Onstage data set. The panel on the right shows
how plays are better clustered by language (noted by their color) after we give a higher
weight to the language relationship during the neighborhood creation process, with all
other settings being equal. See table 1 for exact weights used.

Table 1. The weights used to generate the panels in figure 6.

Relationship
Weight
figure 6a

Weight
figure 6b

http://schema.org/creator 1 1
http://schema.org/isBasedOn 1 1
http://schema.org/inLanguage 1 100

Table 2. Discriminant analysis classification result for clustering plays in the Onstage
data set based on their language. This result was obtained using the left-hand weights
in table 1. The row represents the class, the column represents the cluster. Classification
error is 0.33. These results were obtained using the MclustDA method in R [7].

Class da de en es fr it la nl sv

da 1 0 0 0 0 0 0 2 0
de 1 12 1 0 0 0 1 78 0
en 0 0 10 0 0 0 0 8 0
es 0 0 0 29 0 0 0 33 0
fr 0 1 3 9 54 1 2 448 0
it 0 0 0 0 1 8 0 6 0
la 0 0 0 0 2 0 4 8 0
nl 1 12 9 9 16 9 3 1226 0
sv 0 0 0 0 0 0 0 0 1

Graph Embeddings for Enrichment of Historical Data 13

Table 3. Discriminant analysis classification result for clustering plays in the Onstage
data set based on their language. This result was obtained using the right-hand weights
in table 1. The row represents the class, the column represents the cluster. Classification
error is 0.025. These results were obtained using the MclustDA method in R [7].

Class da de en es fr it la nl sv

da 1 0 0 0 2 0 0 0 0
de 0 90 1 0 0 0 2 0 0
en 0 0 10 0 0 4 4 0 0
es 0 0 0 62 0 0 0 0 0
fr 1 0 0 0 502 1 3 11 0
it 0 0 1 0 0 13 0 1 0
la 0 1 0 0 0 0 13 0 0
nl 0 2 0 0 4 0 13 1266 0
sv 0 0 0 0 0 0 0 0 1

9 Conclusions and Further Research

In this paper we described our method of embedding nodes from an RDF graph,
with some specific purpose in mind, aided by expert knowledge. We have shown
that choosing the correct graph walking strategy matters for specific data sets,
i.e. specific graph structures. We have also shown that using AMSgrad instead
of Adagrad can give a performance boost when optimizing the loss function of
GloVe, at least when using it to embed nodes in an RDF graph. Finally we show
that we can tailor the weights to obtain task specific embeddings. Of course,
many improvements and additions can yet be made and we will outline some of
them here.

Many historical sources have a degree of uncertainty when it comes to infor-
mation such as birth- and death days. Currently, when two sources disagree on
some given date the graph walker will miss that particular bit of information.
The same goes for names, these are often spelled in many different varieties
and/or languages. Giving the graph walker the ability to traverse the graph
while taking these ’weaker’ relationships into account will likely help to connect
entities that were previously unconnected.

Furthermore we plan to integrate these tailored embeddings into the Golden
Agents multi-agent system. This will take the form of an agent which encap-
sulates some embedding. This agent can then answer queries from other agents
such as 1) nearest neighbors for a certain node to give extra context and 2)
split a given set of nodes into several clusters based on their positions in the
embedding.

References

1. Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing.
Internet Mathematics 3(1), 41–62 (2006)

14 J. Baas et al.

2. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data. Machine Learning 94(2), 233–259
(2014)

3. Brouwer, J., Nijboer, H.: Golden agents. a web of linked biographical data for the
dutch golden age. In: CEUR Workshop Proceedings. vol. 2119, pp. 33–38 (2018)

4. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global rdf vector space
embeddings. In: International Semantic Web Conference. pp. 190–207. Springer
(2017)

5. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12(Jul), 2121–
2159 (2011)

6. Fraley, C., Raftery, A.E.: Mclust: Software for model-based cluster analysis. Journal
of classification 16(2), 297–306 (1999)

7. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and den-
sity estimation. Journal of the American statistical Association 97(458), 611–631
(2002)

8. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864. ACM (2016)

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

12. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML. vol. 11, pp. 809–816 (2011)

13. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710. ACM (2014)

15. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237 (2019)

16. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In:
International Semantic Web Conference. pp. 498–514. Springer (2016)

17. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

	Graph Embeddings for Enrichment of Historical Data

