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Abstract. Link prediction in networks works better when those net-
works are connected and not sparse. But can we use common connec-
tivity characteristics to decide once a network is well enough connected
to allow a random walk process to predict links best? Recent results in
our work on link prediction lead us to ask this question and we attempt
to shed some light on it. We do this by combining networks stemming
from different data sources into networks combining different numbers of
layers, and connecting their connectivity characteristics to the AUC that
can be achieved by a random walk algorithm for link prediction. What
we find is that it seems to be very important to reduce the radius and
diameter of the network as much as possible, and get close to having a
single connected component in the network. We also argue that the five
benchmark data sets that have been used in the literature on drug-target
activity prediction might be too easy to allow meaningful evaluations.

1 Introduction

As a rule of thumb, having more data in a learning or mining setting is better.
There are a number of qualifiers to this statement, however: unreliable data,
noisy data, the curse of dimensionality, strongly correlated descriptors can all
turn the addition of data from a boon to an impediment.

The motivation for the work described in this paper can be found in the
work on drug-target activity prediction that we published recently [7], which
started from the rule of thumb. In that problem setting, the goal is to predict
the likelihood that a drug and a target interact, based on the information of their
other interactions (and the interactions of other drugs and targets). The network
induced by introducing edges between interacting entities (drugs or targets) is
often spare and not fully connected, limiting how well additional interactions can
be predicted. This is typically alleviated in the literature by adding additional
information, e.g. about entities’ similarities [1] or interactions of entities of the
same type, e.g. drug-drug ones. When this is done, choices are made about
which similarity measure to use or which additional networks to use or discard.
The typical configuration in the literature consists of a three-layer network: the
interaction layer, as well as one each connecting drugs to drugs and targets to
targets, respectively.



The hypothesis of our work was a simple one: instead of making those choices,
we would use all networks at our disposal and let the prediction algorithm sort
things out. The random walk algorithm we proposed, Newermine, did exactly
that on a large and sparse interaction network, IUPHAR: as we showed ex-
perimentally, running Newermine on a six-layer network from IUPHAR and
the five additional networks which are available gave superior results to using
any three-layer network we could construct. We tentatively explained this result
with the fact that only the six-layer network formed a fully connected compo-
nent while having the same sparsity as some of the better-performing three-layer
networks.

Further results, however, call this assumption into question. Performing the
same kind of experimental evaluation in a number of networks that have become
the de facto benchmark standard in the field [13, 3], we found that using only
the three layers selected in the original publications, Newermine consistently
performed better than six- or eight-layer networks.

There are at least two possible explanations for this: 1) some of the networks
do not provide reliable information, or 2) once the network has a certain struc-
ture that is sufficient for the success of the random walk, adding additional layers
does not help anymore. To shed some light on this issue, we present a system-
atic exploration of how combining different networks into multi-layer networks
affects connectivity characteristics of the resulting network and whether we can
use those characteristics to tentatively explain the quality of the derived link
predictions.

2 Definitions

A graph is a tuple G =< V,E >, where V = {v1, v2, ..., vn} denotes a set of
vertices or nodes, and E ⊆ V × V a set of edges defined by distinct vertex pairs
(u, v) ∈ V × V with u 6= v (without self-loops). We also use the notion of a
bipartite graph, which we define as a graph the vertices of which can be divided
into two classes V1 and V2 such that there is no edge between vertices of the
same class: G =< V1 ∪ V2, E >, E ⊂ V1 × V2.

We address weighted and unweighted graphs in the same manner. We define a
weighted graph as one with a labeling function for edges E 7→ Ae with Ae ∈ [0, 1],
where 0 means no interaction between vertices, 1 confirmed interaction, and an
intermediate value represents interaction probability. An unweighted graph is one
where every edge is labeled by 1.

To exploit different sources of information in one single structure, we em-
ploy multi-layer networks. We define a multi-layer network as a weighted graph
where more than one edge (u, v) can exist for a pair of vertices u, v. Multi-layer
networks can be decomposed into disjunct set of graphs Gl that contain at most
a single edge for each pair of vertices, called layers or just networks. As we wrote
above, our original setting is a bipartite one. To combine it with the multi-layer
framework, we define a bipartite multi-layer graph as a multi-layer network the
vertices of which can be divided into two classes, and where exactly one of the



layers is a bipartite graph. Note, according to the classification of Kivelä et al.
[6], the multi-layer networks used in this work are not node-aligned1, not layer-
disjoint2, have diagonal couplings3 which are categorical4, and the number of
layers can be any.

3 Link prediction via random walk

A long-established method for exploring a network is the random walk [9], which
proceeds roughly as follows: starting from a randomly selected node, it performs
walks along edges of the graph at random. In every step, the edge to follow is
chosen uniformly from all outgoing links (in the case of an unweighted graph) or
proportional to link weights (in the case of a weighted graph). Node importance is
based on how frequently the walker visits the node: a node with higher frequency
is considered more important than a node with a low value.

This idea can be modified in a number of ways to improve network explo-
ration: the walker can be constrained to perform at most max steps steps, to not
visit any of the last c vertices it encountered, or with small probability 1−β the
process can be restarted at any time to avoid getting trapped by those vertices
it mustn’t visit. The product of the probabilities of edges the walker traversed
gives the cumulative probability of a path between two nodes and can be used to
predict a link between a starting node and an end node: if the path probability
is greater than a given threshold, a new edge is predicted.

To extend this approach to multi-layer graphs, one needs to add how to
choose the layer to walk in. We propose to select a network uniformly at random
from the set of networks, and multiply the path strength by 1
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dt – drug-drug, target-target and drug-target networks available

for the current node respectively. Repeat the process until a user-defined target
vertex is reached or the maximum number of steps have been performed. Due
to the randomized nature, random walks are usually repeated several times to
derive more robust estimates.

In our prior work [7], we have adapted a PageRank algorithm to the setting
using an arbitrary number of layers.

4 The data

As mentioned in the introduction, there are several drug-target interaction data
sets, five in total, that have been used in prior work on drug-target interaction
prediction [2, 14, 8, 1], and can be considered benchmarks. We downloaded the

1 All nodes are shared between all layers
2 Each node is present only in a single layer
3 Inter-layer edges, that cross layers, are only between nodes and their counterparts
4 Diagonal couplings for which all possible inter-layer edges are present



original data of four of those datasets (Enzyme, GPCR, IC, NR) from the sup-
plementary information of Yamanishi et al.’s work [13]5, and the fifth (Kinase)
from the supplementary information of Davis et al.’s work [3]6.

The original representation of these data consists of 3 networks: a drug simi-
larity network obtained by the use of the SimComp score that we will refer to as
DS(sc), a target similarity network obtained by the use of the Smith-Waterman
score (TS(sw)), and a drug-target interaction network (DT) constructed from
the KEGG BRITE [5], BRENDA [10], SuperTarget [4], and DrugBank [12]
databases. We have augmented this representation by constructing additional
networks:

– a drug-drug interaction network based on DrugBank (DB),
– a target-target interaction network based on BioGrid [11] (BG),
– a drug similarity network based on similarities calculated using the Tani-

moto coefficient on binary vectors constructed from the presence/absence of
frequent subgraphs (DS(sg)), and

– two target similarity networks calculated using the Tanimoto coefficient on
feature vectors constructed from the presence/absence frequent substrings
(TS(ss)) and Prosite motifs(TS(mot)) 7.

The IUPHAR multi-layer network8 we constructed and used in our earlier
work is not a standard benchmark for drug-target activity prediction in the
literature, however.

1. IUPHAR – an open-access database of drugs, biological targets and their in-
teractions. We used version 2017.5 (released on 22/08/2017). The full dataset
has 8978 drugs, 2987 proteins, and 17198 interactions (edges) between them9.
In order to satisfy the designed setting conditions, we removed duplicate in-
teractions (based on different affinity measures), leaving 12456 interactions
in total. For existing interactions, we label an edge with 1 if the negative
logarithm of the affinity measure is ≥ 5, non-interacting otherwise.10 We
treat all affinity measures available in the data (pKi, pIC50, pEC50, pKd,
pA2, pKB) as equivalent.

2. DrugBank (DB) – an open-access database of drug-drug interactions. We
used version 5.0.11 (released 20-12-2017). It has 658079 interactions of 3138
distinct drugs. 242922 of these interactions involve 1254 distinct drugs that
are present in IUPHAR. The database was also used as a source of 2D
representations of drugs to compute drug similarities.

3. BioGrid (BG) – an open-access database of protein-protein interactions mined
from a corpus of biomedical literature. We used version 3.4.154 (25/10/2017).
It has 1482649 interactions of 67372 distinct proteins. Only 15410 of these
interactions involve proteins present in IUPHAR (1925 distinct proteins).

5 http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget
6 http://staff.cs.utu.fi/aatapa/data/DrugTarget
7 An open-access database is available at http://prosite.expasy.org
8 https://zimmermanna.users.greyc.fr/supplementary-material.html
9 in drugs.csv, interactions.csv, and targets and families.csv, respectively

10 Cutoff proposed by researchers from CERMN (http://cermn.unicaen.fr)



4. NCBI Protein database – The National Center for Biotechnology Informa-
tion proteins database11 was used to obtain amino acids sequences to rep-
resent targets. The data was parsed from the website of NCBI and mapped
to IUPHAR using the RefSeq attribute (human protein sequence identifier)
available in IUPHAR. The database was accessed 20/12/2017.

Drugs were mapped between networks by numerical identifiers provided by
IUPHAR as well as by INN (International Non-proprietary Name) and Common
name attributes. Proteins were mapped by IUPHAR identifiers as well as by
Human Entrez Gene attribute.12

As the preceding listing shows, not all drugs and proteins contained in
IUPHAR are available in DB and BG. In addition, not all proteins and drugs are
annotated with molecular information so that not all entities will be connected
in the similarity networks.

5 Experimental evaluation

As we wrote above, our earlier work indicated that using eight networks leads
to better results than using three networks [7]. In this section, we first explore
whether the same holds for the benchmark data sets. We then explore how many
and which combinations of networks allow for best performance before discussing
the connectivity characteristics of those best-performing combinations. Finally,
we evaluate our newly derived insights on the IUPHAR data.

5.1 Link prediction in benchmark data sets

In this section, we report the results of Newermine, the random-walk based
method we have proposed in [7], on the benchmark data sets. We use optimal
parameter setting (η = 0.2, β = 0.7) defined for this method. Unlike the eval-
uation framework used in [7], we performed a 5x5-fold cross-validation, with
each fold containing 20% of all drug-target interactions, acting as test set for
link prediction once, while the method is run on the other 80%. The process
is repeated 5 times, the results are averaged among all runs. We switched to
a 5x5-fold cross-validation to allow comparison to state-of-the-art methods in
order to be able to compare the results in the future work.

Table 1 reports both area under the ROC curve (AUC) and area under the
precision-recall curve (AUPR), both for using the three layers proposed in the
literature, and the eight layers that result from augmenting those networks with
the additional information we outlined above.

As we can see, using all layers clearly underperforms compared to using only
the three that have been proposed in the literature.

11 https://www.ncbi.nlm.nih.gov/protein/
12 Global Query Cross-Database Search System gene identifiers: https://www.ncbi.

nlm.nih.gov/gene



Data set 3 layers 8 layers
AUC AUPR AUC AUPR

Enzyme 0.844 0.15 0.655 0.15
GPCR 0.81 0.22 0.674 0.112

IC 0.76 0.26 0.61 0.09
NR 0.635 0.26 0.489 0.15

Kinase 0.61 0.13 0.553 0.08
Table 1. Three layer results, eight-layer results of Newermine link predictions on the
benchmark data

5.2 How many/which networks are useful for link prediction?

The question to ask in light of these results is: “Why?” We can formulate at
least two plausible working hypotheses:

1. Certain networks are less reliable/informative than others. Drug-
Bank information, for instance, is arguably anecdotal since interactions are
based on published results in the literature, whereas similarity edges are
reliable: the molecular information about a compound exists and has been
translated into a similarity value in a transparent manner. But not all sim-
ilarities are equal: the SimComp score takes chemical aspects into account
that the use of frequent subgraphs might miss.

2. There are diminishing returns to adding additional layers. To arrive
at a network that can be exploited for link predictions by a random walk
process, it is necessary to create as few connected components as possible,
and a network that is as dense as possible. But once the entire network
consists of a single connected component, and paths between any two vertices
are short, it might be impossible to improve the state of the network.

Either of these effects, or, even worse, a combination of the two, can lead a
random walk process astray. Similar to how adding noisy attributes or ones that
are strongly correlated with attributes that are already present can degrade the
performance of a predictor for vectorial data, adding non-reliable or redundant
edges can undermine link prediction.

5.3 Connectivity characteristics and redundancy

We start with exploring the second hypothesis. Table 2 illustrates the main
characteristics of the different data sets and we can see that IUPHAR is not
like the others: significantly less dense, with a much higher number of distinct
connected components. Sparsity refers to the number of edges in the network,
divided by the maximal number of edges possible. Notably, the Kinase network
is also different since it is the only one that is already connected.

And as Table 3 shows, adding two additional networks boosts the density
of the benchmark data sets and turns them into a single connected component,



Table 2. Basic properties of Benchmark and IUPHAR data sets

Data set Drugs Targets |V | |E| Sparsity CC

Enzyme 445 664 1109 2926 0.005 44

GPCR 223 95 318 635 0.013 19

IC 210 204 414 1476 0.017 3

NR 54 26 80 90 0.028 10

Kinase 68 442 510 1527 0.016 1

IUPHAR 8137 2502 10639 12456 0.00017 443

whereas even the best-case situation for IUPHAR still results in a sparse, frag-
mented network. The reason for this is, as mentioned before, that even in the
case of the rich similarity networks there are missing connections. The reader
will also notice that the three-layer IUPHAR combination indicates fewer ver-
tices since we removed isolated vertices, i.e. those not connected to any other
vertex in any layer.

Table 3. Basic properties of three-layer networks

Data set Drugs Targets Layers |V | |E| Sparsity CC

Enzyme 445 664 3 1109 321832 0.524 1

GPCR 223 95 3 318 29853 0.592 1

IC 210 204 3 414 44127 0.516 1

NR 54 26 3 80 1846 0.584 1

Kinase 442 1527 3 510 101266 0.780 1

IUPHAR 7025 2010 3 9126 1786917 0.0215 103

This is probably a first indication for why using three layers for the IUPHAR
network is not enough – it does not explain, however, why adding additional
layers degrades link prediction performance on the benchmark data sets.

Table 4. Connectivity characteristics of different network combinations for the Enzyme
data set

Networks |L| Sparsity CC Giant component Flattened graph AUC AUPR
Radius Diameter |E| Ccoef Tr

BG 2 0.007 12 6 10 4153 0.1599 0.0562 0.24 0.01
DB 2 0.018 14 5 10 10856 0.2127 0.435 0.66 0.1

DS(sg) 2 0.166 1 2 3 101716 0.7298 0.971 0.82 0.14
DS(sc) 2 0.166 1 2 3 101716 0.7298 0.971 0.82 0.14

DS(sg),TS(sw) 3 0.524 1 2 2 321832 0.9825 0.9838 0.84 0.15
DS(sc),TS(sw) 3 0.524 1 2 2 321832 0.9825 0.9838 0.84 0.15

DS(sg),DB,TS(sw),TS(ss) 5 0.895 1 2 2 321832 0.9825 0.9838 0.74 0.09
DS(sg),DB,TS(sw),TS(mot) 5 0.895 1 2 2 321832 0.9825 0.9838 0.74 0.09
DS(sc),DB,TS(sw),TS(ss) 5 0.895 1 2 2 321832 0.9825 0.9838 0.74 0.10

DS(sc),DB,TS(sw),TS(mot) 5 0.895 1 2 2 321832 0.9825 0.9838 0.74 0.09



To gain more insight into this question, we present a number of connectivity
characteristics of derived multi-layer networks in Tables 4 – 8. For reasons of
space constraints and readability, we do not show the complete list but only
representative results. The first column lists which additional networks have
been added to the LT network (which is always present and therefore omitted).
The tables then list, in order,

– the number of layers that the network has (|L|),
– its sparsity, i.e. the number of existing edges divided by the maximum pos-

sible number of edges,
– the number of connected components (CC), where by connected component

we assume a graph any two vertices of which are connected to each other by
a path, and which is connected to no additional vertices in the supergraph,

– the radius of the network, i.e. the minimum shortest path between any two
different vertices in the network,

– its diameter, the maximum shortest path between any two different vertices,
– the number of edges of the flattened graph (|E|),
– the clustering coefficient (Ccoef ), the number of existing closed triangles

divided by the maximum possible number of open and close triangles, and
– the transitivity (Tr), the number of existing closed triangles divided by the

number of connected triples.

Finally, the right-most two columns list the AUC and AUPR scores for link
prediction via Newermine. It should be noted that connectivity characteristics
such as clustering coefficient and transitivity are typically not defined for multi-
layer networks – we therefore report these measures for a flattened network: when
there is an edge available between any two nodes, they are treated as connected,
no matter the network the edge occurs in. It should also be mentioned also
that in networks having more than one connected component, we compute and
report radius and diameter values for the largest such component in terms of
the number of vertices. For a network with the number of CC = 1 that giant
component is equal to the network itself.

Table 5. connectivity characteristics of different network combinations for the GPCR
data set

Networks |L| Sparsity CC Giant component Flattened graph AUC AUPR
Radius Diameter |E| Ccoef Tr

BG 2 0.013 14 6 12 650 0.0251 0.0078 0.28 0.02
DB 2 0.087 7 5 9 4369 0.3706 0.5779 0.65 0.19

DS(sg) 2 0.504 1 2 3 25388 0.8771 0.9764 0.77 0.22
DS(sc) 2 0.504 1 2 3 25388 0.8771 0.9764 0.77 0.22

DS(sg),TS(sw) 3 0.592 1 2 2 29853 0.9546 0.9694 0.80 0.21
DS(sc),TS(sw) 3 0.592 1 2 2 29853 0.9546 0.9694 0.80 0.22

DS(sg),DB,TS(sw),TS(ss) 5 0.755 1 2 2 29853 0.9546 0.9694 0.73 0.17
DS(sg),DB,TS(sw),TS(mot) 5 0.755 1 2 2 29853 0.9546 0.9694 0.74 0.17
DS(sc),DB,TS(sw),TS(ss) 5 0.755 1 2 2 29853 0.9546 0.9694 0.74 0.18

DS(sc),DB,TS(sw),TS(mot) 5 0.755 1 2 2 29853 0.9546 0.9694 0.74 0.18

What we see for every data set except Kinase is that reducing the number
of connected components improves link prediction, especially once only a single



connected component remains. For all of these benchmark data sets, the latter
is achieved at the latest once the network contains three layers.

Table 6. connectivity characteristics of different network combinations for the IC data
set

Networks |L| Sparsity CC Giant component Flattened graph AUC AUPR
Radius Diameter |E| Ccoef Tr

BG 2 0.019 3 5 9 1583 0.0958 0.034 0.32 0.02
DB 2 0.107 3 4 7 6666 0.3639 0.6033 0.63 0.14

DS(sg) 2 0.481 1 2 3 23421 0.9169 0.9367 0.71 0.16
DS(sc) 2 0.481 1 2 3 23421 0.9169 0.9367 0.72 0.17

DS(sg),TS(sw) 3 0.516 1 2 2 44127 0.9469 0.9414 0.76 0.26
DS(sc),TS(sw) 3 0.516 1 2 2 44127 0.9469 0.9414 0.76 0.27

DS(sg),DB,TS(sw),TS(ss) 5 0.819 1 2 2 44127 0.9469 0.9414 0.67 0.15
DS(sg),DB,TS(sw),TS(mot) 5 0.819 1 2 2 44127 0.9469 0.9414 0.67 0.15
DS(sc),DB,TS(sw),TS(ss) 5 0.819 1 2 2 44127 0.9469 0.9414 0.68 0.15

DS(sc),DB,TS(sw),TS(mot) 5 0.819 1 2 2 44127 0.9469 0.9414 0.67 0.16

There seems to be a secondary effect of decreasing the diameter to two: for
Enzyme, GPCR, and IC, the final bump in AUC comes once the network moves
from a diameter of three to one of two. This decrease in the diameter goes
together with a clear increase in the value of the clustering coefficient. Notably,
however, we achieve better results on NR for a diameter of three than one of
two.

Table 7. connectivity characteristics of different network combinations for the NR
data set

Networks |L| Sparsity CC Giant component Flattened graph AUC AUPR
Radius Diameter |E| Ccoef Tr

BG 2 0.043 2 4 6 137 0.2241 0.2318 0.26 0.04
DB 2 0.107 3 3 5 339 0.2717 0.3026 0.5 0.10

DS(sg) 2 0.481 1 2 3 1521 0.8648 0.9452 0.61 0.22
DS(sc) 2 0.481 1 2 3 1521 0.8648 0.9452 0.63 0.28

DS(sg),TS(sw) 3 0.584 1 2 2 1846 0.9096 0.9295 0.60 0.20
DS(sc),TS(sw) 3 0.584 1 2 2 1846 0.9096 0.9295 0.63 0.26

DS(sg),BG 3 0.496 1 2 3 1568 0.7892 0.9413 0.66 0.19
DS(sc),BG 3 0.496 1 2 3 1568 0.7892 0.9413 0.69 0.22

DS(sg),DB,TS(sw),TS(ss) 5 0.766 1 2 2 1846 0.9096 0.9295 0.51 0.13
DS(sg),DB,TS(sw),TS(mot) 5 0.766 1 2 2 1846 0.9096 0.9295 0.48 0.12
DS(sc),DB,TS(sw),TS(ss) 5 0.766 1 2 2 1846 0.9096 0.9295 0.53 0.15

DS(sc),DB,TS(sw),TS(mot) 5 0.766 1 2 2 1846 0.9096 0.9295 0.52 0.16

Once those two aspects – the number of connected components and the di-
ameter – have been addressed, there does not seem to be anything to be gained
from adding additional networks. Notably, making the multi-layer network sig-
nificantly denser does not result in additional gains but instead reduces quality.

5.4 Reliability/informativeness of networks

We would suspect that this degradation of link prediction quality is related to the
first hypothesis that we formulated above: that certain networks simply provide
better information.



Table 8. connectivity characteristics of different network combinations for the Kinase
data set

Networks |L| Sparsity CC Giant component Flattened graph AUC AUPR
Radius Diameter |E| Ccoef Tr

BG 2 0.019 1 4 6 2433 0.1447 0.0459 0.36 0.04
DB 2 0.017 1 5 10 1615 0.0363 0.0285 0.56 0.13

DS(sg) 2 0.038 1 2 4 3700 0.7136 0.5108 0.66 0.17
DS(sc) 2 0.039 1 2 3 3805 0.7319 0.5451 0.65 0.16

DS(sg),DB 3 0.039 1 2 4 3701 0.7137 0.5111 0.65 0.16
DS(sc),DB 3 0.040 1 2 3 3805 0.7319 0.5451 0.64 0.14
DS(sg),BG 3 0.039 1 3 6 4606 0.5234 0.4938 0.65 0.12
DS(sc),BG 3 0.040 1 3 6 4711 0.532 0.5272 0.64 0.11

DS(sg),TS(sw) 3 0.779 1 2 3 101161 0.954 0.9847 0.61 0.14
DS(sc),TS(sw) 3 0.780 1 2 3 101266 0.9578 0.9848 0.61 0.13

DS(sg),DB,TS(sw),TS(ss) 5 1.516 1 2 3 101162 0.9541 0.9847 0.58 0.12
DS(sg),DB,TS(sw),TS(mot) 5 1.516 1 2 3 101162 0.9541 0.9847 0.58 0.12
DS(sc),DB,TS(sw),TS(ss) 5 1.517 1 2 3 101266 0.9578 0.9848 0.58 0.11

DS(sc),DB,TS(sw),TS(mot) 5 1.517 1 2 3 101266 0.9578 0.9848 0.58 0.11

Tables 4 – 8 also show that not all multi-layer networks that lead to similar
or even the same connectivity characteristics allow for the same performance of
Newermine. In each table, we have indicated the best-performing layer com-
bination (or combinations) in bold and the layer combination found in the
literature – using SimComp for drug similarity and Smith-Waterman for target
similarity – in italics.

As we can see, for Enzyme, GPCR, and IC, the combination used in the
literature does indeed give best results. But while Smith-Waterman seems to
encode vital information about target similarity, the SimComp score can be
replaced by a very simple similarity measure, the Tanimoto coefficient over a
vector of frequent subgraphs, i.e. subgraphs mined in an unsupervised manner!

The results are even more interesting for the other two data sets: for NR,
using the SimComp/Smith-Water does not give best results – instead combining
BioGrid information about target-target interactions with SimComp drug simi-
larity results in the highest AUC. The reason for that could be in the fact that
NR is too small in terms of the number of vertices and the number of edges for
the evaluation framework we use (when we remove 20% of edges the network
might become destructed too much what results in such unpredictable behavior).
And there is an explanation for Kinase also. As we already wrote above, it is dif-
ferent, particularly because it already consists of a single connected component.
Adding subgraph-based drug similarity to the interaction network is enough to
achieve the highest AUC, with the SimComp/Smith-Waterman combination not
only behind that two-layer network but also behind a number of others that do
not use the TS(sw) network.

5.5 How does this transfer to IUPHAR?

After having explored how connectivity characteristics on benchmark data sets
align with the quality of link prediction, we obviously want to come back to our
original problem settings – link prediction on the IUPHAR data set – and see
whether we can observe similar behavior.



Table 9. connectivity characteristics of different network combinations for the
IUPHAR data set

Networks |L| Sparsity CC Giant component Flattened graph AUC
Radius Diameter |E| Ccoef Tr

DS(sg) 2 0.5147 69 5 9 23272066 0.7992 0.9996 0.5781
DB, BG 3 0.0033 87 7 14 143922 0.1285 0.5118 0.5255

DS(sg), DB, TS(ss) 4 0.4780 14 5 9 24929849 0.9003 0.9992 0.5805
DS(sg), DB, TS(mot) 4 0.4780 14 5 9 24929849 0.9003 0.9992 0.5800

DS(sg), DB, TS(ss), TS(mot) 5 0.5095 14 5 9 24929849 0.9003 0.9992 0.5812
all 6 0.4719 1 5 9 24932609 0.8802 0.9992 0.5783

In Table 9, we list the connectivity characteristics of the best-performing net-
work combinations for IUPHAR, one for each number of layers from two to six.
There is an exception for four layers where the AUC was virtually indistinguish-
able. We had neither DS(sc) nor TS(sw) networks for the IUPHAR set.

There are a number of interesting observations here.

1. The first is that we were wrong in our Newermine publication – the best
layer combination does not contain all six layers but only five, the BioGrid
layer seems to reduce the quality of the information in the multi-layer net-
work.

2. The second is that the importance of reducing radius and diameter hold –
five and nine are the two lowest values we can achieve on IUPHAR.

3. The third observation is that the exception to this rule is the three-layer
setting – this setting, so common in the literature, seems to be the single
worst setting for IUPHAR and the improvement on it therefore easiest.

4. Fourth, once radius and diameter have been driven down, the number of
connected components seems to matter less, a phenomenon we could not
observe on the smaller benchmark data sets.

5. Finally, there were several other combinations that achieved a radius of five
and a diameter of nine, without leading to best AUC. The difference is that
the “winning” combinations have lower average distance between vertices
(not shown).

6 Conclusion

This is very consciously a workshop paper, intended to provoke discussion and
additional work to explore this issue further. As such, we do not have clear
conclusions to draw. What seems to emerge from our experimental data, however,
is that the most important issue to pay attention to when augmenting networks
for link prediction is to add data that reduces the radius and diameter of the
final network as much as possible. We have to admit, however, that those results
are also preliminary in the sense that, for running time reasons, we did not in
fact test all layer combinations for all networks. To base our insights on firmer
ground, we will do this for a future publication.6

We would add that the five benchmark data sets that are being widely used
in the literature on drug-target activity prediction might not be the best choice.



They are all small, can easily augmented to form only a single connected com-
ponent and achieve minimal diameter. This is doubly true for the Kinase data
set that forms a single connected component to begin with.

Similarly to how data sets in other fields have become outdated and are rarely
used nowadays – e.g. the Iris data set for machine learning and clustering, or
the Mutagenicity data set for ILP and substructure mining – it might be time
to retire these networks and curate new benchmarks.
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