
Mixed-Order Spectral Clustering for Networks

Yan Ge, Haiping Lu, and Pan Peng

University of Sheffield, Sheffield, UK
{yge5,h.lu,p.peng}@sheffield.ac.uk

Abstract. Clustering is fundamental for gaining insights from com-
plex networks, and spectral clustering (SC) is a popular approach. Con-
ventional SC focuses on second-order structures (e.g., edges connect-
ing two nodes) without direct consideration of higher-order structures
(e.g., triangles and cliques). This has motivated SC extensions that di-
rectly consider higher-order structures. However, both approaches are
limited to considering a single order. This novel research paper proposes
a new Mixed-Order Spectral Clustering (MOSC) approach to model both
second-order and third-order structures simultaneously, with two MOSC
methods developed based on Graph Laplacian (GL) and Random Walks
(RW). MOSC-GL combines edge and triangle adjacency matrices, with
theoretical performance guarantee. MOSC-RW combines first-order and
second-order random walks for a probabilistic interpretation. We auto-
matically determine the mixing parameter based on cut criteria or tri-
angle density, and construct new structure-aware error metrics for per-
formance evaluation. Experiments on five real-world networks show that
MOSC-GL with automatically determined mixing parameter improves
by 5.4% over the best competing algorithm in average normalised mutual
information (NMI) of four networks with low triangle density. For the
remaining PBlogs network with high triangle density, MOSC-RW with
automatically determined mixing parameter improves by 18.9 times over
the best competing algorithm in NMI.

Keywords: Spectral clustering · Network analysis · Higher-order struc-
tures · Mixed-order structures

1 Introduction

Networks (a.k.a. graphs) are important data structures that abstract relations
between discrete objects, such as social networks and brain networks [4]. A net-
work is composed of nodes and edges representing node interactions. Clustering
is an important and powerful tool in analysing network data, e.g., for community
detection [6, 27].

Clustering aims to divide a data set into clusters (or communities) such that
the nodes assigned to a particular cluster are similar or well connected in some
predefined sense [9, 23, 26]. It helps us reveal functional groups hidden in data.
As a popular clustering method, conventional spectral clustering (SC) [20, 24]
encodes pairwise similarity into an adjacency matrix. Such encoding inherently

2 Y. Ge et al.

(a) A network. (b) Edges. (c) Triangles. (d) Mixed.

Fig. 1. Motivation: the second and third order structures in (a) can not be fully cap-
tured by edge/triangle adjacency matrix in (b)/(c). Our proposed mixed adjacency
matrix in (d) can capture both.

restricts SC to second-order structures [4], such as undirected or directed edges
connecting two nodes.1 However, in many real-world networks, the minimal and
functional structural unit of a network is not a simple edge but a small network
subgraph (a.k.a. motif) that involves more than two nodes [21], which we call a
higher-order structure.

Higher-order structures consist of at least three nodes (e.g., triangles, 4-vertex
cliques) [4]. It can directly capture interaction among three or more nodes. When
clustering networks, higher-order structures can be regarded as fundamental
units and algorithms can be designed to minimise cutting them in partitioning.
Clustering based on higher-order structures can help us gain new insights and
significantly improve our understanding of underlying networks. For example,
triangular structures, with three reciprocated edges connecting three nodes, play
important roles in brain networks [30] and social networks [12,13]. More impor-
tantly, higher-order structures allow for more flexible modelling. For instance,
considering directions of edges, there exist 13 different third-order structures,
but only two different second-order structures [28]. Thus, the application can
drive which third-order structures to be preserved.

Thus, there are emerging interests in directly modelling higher-order struc-
tures in network clustering. These works can be grouped into five approaches: 1)
an adjacency tensor can be constructed to encode higher-order structures and
then reduced to a matrix to apply conventional SC [10, 11], developed in the
related hypergraph clustering problem; 2) a transition tensor can be constructed
based on random walk and then reduced to a matrix for conventional SC [3,34];
3) a counting and reweighting scheme can be employed to capture higher-order
structures and reveal clusters [4, 17, 32]; 4) higher-order local clustering can
be used to mitigate computation cost problem [16, 37, 39]; 5) some network
embedding methods [25, 31] preserve the higher-order proximity that considers
relationship between more than two nodes, which can be applied to clustering.

However, it should be noted that most networks have both second-order and
higher-order structures, and both can be important. Existing conventional and
third-order SC methods model only either second-order or third-order structures,
but not both. Second-order SC does not take triangles into consideration, while

1 Edges are considered as first-order structures in [3] but second-order structures
in [39]. We follow the terminologies in the latter [39] so that the “order” here refers
to the number of nodes involved in a particular structure.

Mixed-Order Spectral Clustering for Networks 3

third-order SC loses information of some edges, in particular, those that do not
belong to any triangle. A simple example is given by the network in Fig. 1(a),
which contains both edges and triangles. In Figs. 1(b) and 1(c), which correspond
to the representations used by second-order and third-order SC, respectively,
each entry indicates the number of edges and triangles involving two nodes of
Fig. 1(a). As the figures show: Second-order SC fails to capture the importance
between nodes 2 and 3, but they participate in more triangles than any other two
adjacent nodes (say 1 and 2), which is not reflected in Fig. 1(b); Third-order SC
fails to model the importance of the relation between nodes 4 and 5, but there
does exist an edge between them (and thus is more important than any two
non-adjacent nodes, say nodes 2 and 5), which was missed in Fig. 1(c).

In this paper, we propose a new Mixed-Order Spectral Clustering (MOSC) to
preserve structures of different orders simultaneously, as in Fig. 1(d). For clear
and compact presentation, we focus on two undirected unweighted structures:
edges (second-order structures) and triangles (third-order structures). Further
extensions can be developed for mixing more than two orders, and/or orders
higher than three. We summarise our three contributions as following:

1. Mixed-order models. We develop two MOSC models: one based on Graph
Laplacian (GL) and the other based on Random Walks (RW). MOSC-GL
combines edge and triangle adjacency matrices to define a mixed-order Lapla-
cian, with its theoretical performance guarantee derived by proving a mixed-
order Cheeger inequality. MOSC-RW combines first-order and second-order
RW models for a probabilistic interpretation. The final clusters are obtained
via a sweep cut procedure or k-means. See Sec. 3.1 and Sec. 3.2.

2. Automatic model selection. We propose cut-criteria-based and triangle-
density-based strategies to automatically determine the mixing parameter
(ranging from 0 to 1) that is the only hyperparameter in MOSC. See Sec. 3.4.

3. Structure-aware error metrics. We propose structure-aware error met-
rics to gain insights on the quality of structure preservation. Existing works
on higher-order structure clustering use evaluation metrics that focus on
mis-clustered nodes [11, 32, 37]. However, mis-clustered nodes do not have
a monotonic relationship with mis-clustered structures so they may fail to
reflect the errors in structures. See Sec. 3.5.

2 Preliminaries

Notations. We denote scalars by lowercase letters, e.g., a, vectors by lowercase
boldface letters, e.g., a, matrices by uppercase boldface, e.g., A, and tensors by
calligraphic letters, e.g., A. Let G = (V,E) be an undirected unweighted graph
(network) with V = {v1, v2, . . . , vn} being the set of n vertices (nodes), i.e., n
= |V|, and E being the set of edges connecting two vertices.

2.1 Normalised Graph Laplacian

Let W ∈ Rn×n be an unweighted adjacency matrix of G where W(i, j) = 1 if
(vi, vj) ∈ E, otherwise W(i, j) = 0. The degree matrix D is a diagonal matrix

4 Y. Ge et al.

with diagonal entries D(i, i) =
∑n
j=1 W(i, j), which is the degree of vertex vi.

Let N = D −W denote the Laplacian matrix of G. The normalised Laplacian
of G is defined as L = D−

1
2 ND−

1
2 [33].

Let WT be triangle adjacency matrix of G with its entry (i, j) being the
number of triangles containing vertices i and j, which leads to a corresponding
weighted graph GT [4]. Similarly, we can define the triangle Laplacian as NT =

DT −WT and the normalised triangle Laplacian as LT = D
− 1

2

T NTD
− 1

2

T , where
DT (i, i) =

∑n
j=1 WT (i, j).

2.2 First-Order and Second-Order Random Walks

We define a second-order transition matrix P by normalising the adjacency ma-
trix W to represent edge structures as P = D−1W [20]. The entry Pij represents
the probability of jumping from vertex vi to vj in one step. The transition matrix
P represents a first-order random walk process on graph G [20].

To define second-order random walks, Benson et al. [3] firstly define a sym-
metric adjacency tensor T ∈ Rn×n×n such that the connectivity information for
three vertices {vi, vj , vk}∈ V can be represented explicitly in this tensor. Thus,
T encodes triangle structures in G as:

T (i, j, k) =

{
1 vi, vj , vk form a triangle,

0 otherwise.
(1)

Next, they form a transition tensor P as

P(i, j, k) = T (i, j, k)/

n∑
m=1

T (i,m, k), (2)

where
∑n
m=1 T (i,m, k) 6= 0, and 1 ≤ i, j, k ≤ n. For

∑n
m=1 T (i,m, k) = 0, Ben-

son et al. [3] set P(i, j, k) to 1
n . Here, P(i, j, k) represents a transition probability

of a second-order random walk. And the probability of jumping to state i relies
on the last two states j and k [35].

2.3 Spectral Clustering Basics and Cut Criteria

Bi-partitioning SC (Algorithm 1) first constructs a matrix B to encode structures
in the input graph G [33]. It then computes a dominant eigenvector v of B, thus
making use of its spectrum. Each entry of v corresponds to a vertex. Next, we sort
vertices by the values v(i) (or appropriately normalised values) and consider the
set Tu consisting of the first u vertices in the sorted list, for each 1 ≤ u ≤ n− 1.
Then the algorithm finds S = arg minTu τ(Tu), called the sweep cut w.r.t. some
cut criterion τ [15]. The choice of the cut criterion can affect the quality of
output clusters [15].

As the last step of SC, sweep cut aims to optimise a cut criterion to ob-
tain good clustering results. Most cut criteria have two main objectives: 1) to

Mixed-Order Spectral Clustering for Networks 5

Algorithm 1 Bi-partitioning Spectral Clustering

1: Matrix B encodes structures of the input graph G.
2: Compute a dominant eigenvector v of B.
3: v← sorted ordering of v or a normalised version of sorted v.
4: {S, S̄} ← sweep cut of v w.r.t. a cut criterion.

preserve a rich set of structures within S and S̄, and 2) to avoid structures
being broken due to partitioning of S and S̄ [33]. Moreover, different cut crite-
ria serve to preserve different structures, such as second-order cut criteria (e.g.,
2nd-conductance [27]) for the preservation of the edge structure and third-order
cut criteria (e.g., 3rd-conductance [3]) for the preservation of triangle structure.
Besides sweep cut, k-means [19] is another popular choice for finding the final
partitions.

2.4 Cheeger Inequalities

Given G = (V,E) and a subset S ⊆ V, let S̄ denote the complement of S. Let
cut2(S;G) denote the edge cut of S, i.e., the number of edges between S and S̄ in
G. Let vol2(S;G) denote the edge volume of S, i.e., the total degrees of vertices

in S. The edge conductance of S is defined as φ2(S;G) = cut2(S;G)
min{vol2(S;G),vol2(S̄;G)} .

The classical Cheeger inequality below relates the conductance of the sweep cut
of SC to the minimum conductance value of the graph [7].

Lemma 1 (Second-Order Cheeger Inequality). Let v be the second small-
est eigenvector of L. Let T ∗ be the sweep cut of D−1/2v w.r.t. cut criterion
φ2(·;G). It holds that φ2(T ∗;G) ≤ 2

√
φ∗2, where φ

∗
2 = minS⊆V φ2(S;G) is the

minimum conductance over any set of vertices.

Let cut3(S;G) denote the triangle cut of S, i.e., the number of triangles that
have at least one endpoint in S and at least one endpoint in S̄. Let vol3(S;G)
denote the triangle volume of S, i.e., the number of triangle endpoints in S. The

triangle conductance [3] of S is defined as φ3(S;G) = cut3(S;G)
min{vol3(S;G),vol3(S̄;G)} . It

is further proved in [4] that for any S ⊆ V , φ3(S;G) = φ2(S;GT), which leads
to the following third-order Cheeger inequality.

Lemma 2 (Third-order Cheeger Inequality). Let v be the second smallest

eigenvector of LT . Let T ∗ denote the sweep cut of D
−1/2
T v w.r.t. cut criteria

φ2(·;GT). It holds that φ3(T ∗;G) ≤ 4
√
φ∗3, where φ

∗
3 = minS⊆V φ3(S;G).

3 Proposed Mixed-Order Approach

To model both edge and triangle structures simultaneously, we introduce a new
Mixed-Order SC (MOSC) approach, with two methods based on Graph Lapla-
cian (GL) and Random Walks (RW). MOSC-GL combines the edge and triangle

6 Y. Ge et al.

Algorithm 2 MOSC via Graph Laplacian (MOSC-GL)

Input: G = (V, E), mixing parameter λ
Output: Two node sets S, S̄
1: Compute the normalized mixed-order Laplacian LX as defined in Eq. (3)
2: Compute the second smallest eigenvector v of LX .

3: v← sorted ordering of D
− 1

2
X v.

4: {S, S̄} ← sweep cut on v w.r.t. a cut criterion.

adjacency matrices, which leads to a mixed-order Cheeger inequality to provide
a theoretical performance guarantee. MOSC-RW is developed under the random
walks framework to combine the first-order and second-order random walks,
providing a probabilistic interpretation. Next, we develop an automatic hyper-
parameter determination scheme and define new structure-aware error metrics.

3.1 MOSC Based on Graph Laplacian (MOSC-GL)

MOSC-GL introduces a mixed-order adjacency matrix WX that linearly com-
bines the edge adjacency matrix W and the triangle adjacency matrix WT , with
a mixing parameter λ ∈ [0, 1]. WX can be seen as a weighted adjacency matrix
of a weighted graph GX , on which we can apply conventional SC (Algorithm 1).
Specifically, we first construct the matrix WX and the corresponding diagonal
degree matrix DX as:

WX = (1− λ)WT + λW, DX = (1− λ)DT + λD.

Let GX denote an undirected weighted graph with adjacency matrix WX ,
we can define a mixed-order Laplacian NX and its normalised version LX as:

NX = DX −WX = (1− λ)NT + λN,

LX = D
− 1

2

X NXD
− 1

2

X . (3)

Then, we compute the eigenvector corresponding to the second smallest eigen-
value of LX and perform the sweep cut to find the partition with the small-
est edge conductance in GX . The MOSC-GL algorithm is summarised in Algo-
rithm 2.

When λ = 1, MOSC-GL is equivalent to SC by Ng et al. [24] and only con-
siders second-order structures. When λ = 0, MOSC-GL is equivalent to motif-
based SC [4]. MOSC-GL maintains the advantages of traditional SC: compu-
tational efficiency, ease of implementation and mathematical guarantee on the
near-optimality of resulting clusters, which we formalise and prove in the follow-
ing.

Performance guarantee. Given a graph G and a vertex set S, we define
its mixed-order cut and volume as

cutX(S;G) = (1− λ)cut3(S;G) + λcut2(S;G),

volX(S;G) = (1− λ)vol3(S;G) + λvol2(S;G),

Mixed-Order Spectral Clustering for Networks 7

respectively. Then, we define the mixed-order conductance of S as:

φX(S;G) =
cutX(S;G)

min(volX(S;G), volX(S̄;G))
,

which generalises edge and triangle conductance. A partition with small φX(S;G)
corresponds to clusters with rich edge and triangle structures within the same
cluster while few both structures crossing clusters. Finding the exact set of nodes
S with the smallest φX is computationally infeasible. Nevertheless, we can derive
a performance guarantee for MOSC-GL to show that the output set obtained
from Algorithm 2 is a good approximation.

Theorem 1 (Mixed-order Cheeger Inequality). Given an undirected graph
G, let T ∗ denote the set outputted by MOSC-GL (Algorithm 2) w.r.t. the cut
criterion φ2(·;GX). Let φ∗ = minS⊆V φX(S;G) be the minimum mixed-order
conductance over any set of vertices. Then it holds that φX(T ∗;G) ≤ 2

√
2φ∗.

Proof. It suffices for us to prove that for any set S,

1

2
φ2(S;GX) ≤ φX(S;G) ≤ 2φ2(S;GX). (4)

Assume for now that the inequality (4) holds. By Lemma 1, the set T ∗

satisfies φ2(T ∗;GX) ≤ 2
√
ψ∗, where ψ∗ = minS⊆V φ2(S;GX). Let R be the set

with φX(R;G) = φ∗ = minS⊆V φX(S;G). Then by inequality (4), we have

φX(T ∗;G) ≤ 2φ2(T ∗;GX) ≤ 2
√
ψ∗ ≤ 2

√
φ2(R;GX)

≤ 2
√

2φX(R;G) = 2
√

2φ∗.

This will then finish the proof. Thus, we only need to prove the inequality (4).
By Lemma 4 in [4], we have cut3(S;G) = 1

2cut2(S;GT). This gives that
cutX(S;G) = (1−λ)cut3(S;G)+λcut2(S;G) = (1−λ) 1

2cut2(S;GT)+λcut2(S;G).
By Lemma 1 in [4], we have vol3(S;G) = 1

2vol2(S;GT). This gives that
volX(S;G) = (1−λ)vol3(S;G)+λvol2(S;G) = (1−λ) 1

2vol2(S;GT)+λvol2(S;G).
Since the adjacency matrix of GX is a linear combination of the adjacency

matrix of GT and the adjacency matrix of G, i.e., WX = (1 − λ)WT + λW,
we have that cut2(S;GX) = (1 − λ)cut2(S;GT) + λcut2(S;G), vol2(S;GX) =
(1− λ)vol2(S;GT) + λvol2(S;G).

The above equations imply that for any set S, it holds that 1
2cut2(S;GX) ≤

cutX(S;G) ≤ cut2(S;GX), 1
2vol2(S;GX) ≤ volX(S;G) ≤ vol2(S;GX).

The last inequality also implies that for any S, 1
2vol2(S̄;GX) ≤ volX(S̄;G) ≤

vol2(S̄;GX). Therefore, by the definition of φX(S;G), we have

φX(S;G) ≤ cut2(S;GX)

min(1
2vol2(S;GX), 1

2vol2(S̄;GX))
= 2φ2(S;GX),

φX(S;G) ≥
1
2cut2(S;GX)

min(vol2(S;GX), vol2(S̄;GX))
=

1

2
φ2(S;GX).

This completes the proof of the inequality (4).

8 Y. Ge et al.

Complexity analysis. The computational time of MOSC-GL is dominated
by the time to form WX and compute the second eigenvector of LX . The former
requires finding all triangles in the graph, which can be as large as O(n3) for a
complete graph. While most real networks are far from complete so the actual
complexity is much lower than O(n3). For the latter, it suffices to use power
iteration to find an approximate eigenvector, with each iteration at Õ(g), where
g denotes the number of non-zero entries in LX .

3.2 MOSC Based on Random Walks (MOSC-RW)

Alternatively, we can develop MOSC under the random walks framework. Edge-
or triangle-based conductance can be viewed as a probability corresponding to
the Markov chain. For a set S with edge volume at most half of the total graph
edge volume, the edge conductance of S is the probability that a random walk
will leave S conditioned upon being inside S, where the transition probabilities of
the walk are defined by edge connections [33]. Similarly, for a set S with triangle
volume at most half of the total graph triangle volume, the triangle conductance
of S is the probability that a random walk will leave S conditioned upon being
inside S, where the transition probabilities of the walk are defined by the tri-
angle connections [3]. This motives us to directly combine random walks from
edge and triangle connections to perform MOSC. Therefore, we propose MOSC-
RW to consider both edge and triangle structures via the respective probability
transition matrix and tensor, under the random walks framework.

Specifically, starting with the third-order adjacency tensor T (Eq. (1)), we
define a third-order transition tensor P (Eq.(2)). In the case

∑n
m=1 T (i,m, k) =

0, we set P(i, j, k) with 0. Let Tk ∈ Rn×n denote the kth n× n block of P, i.e.,
Tk = P(:, :, k). Next, we average {Tk, k = 1, ..., n} to reduce P to a similarity
matrix A:

A =
1

n

n∑
k=1

Tk.

Now recall that P = D−1W denotes the probability transition matrix of random
walks on the input graph. We construct a mixed-order similarity matrix H by a
weighted sum of A and P via a mixing parameter λ ∈ [0, 1] as:

H = (1− λ)A + λP. (5)

Thus, we obtain the MOSC-RW algorithm with standard SC steps on H, as
summarised in Algorithm 3.

When λ = 1, MOSC-RW is equivalent to conventional SC by Shi and Meila [29]
and considers only second-order structures. MOSC-RW with λ = 0 considers
only third-order structures, which is a simplified (unweighted) version of tensor
SC (TSC) by Benson et al. [3]. In the intermediate case, λ controls the trade-off.

Interpretation. Now we interpret the model (Eq. (5)) as a mixed-order
random walks process. At every step, the random walker chooses either a first-
order (with probability λ) or a second-order (with probability (1− λ)) random

Mixed-Order Spectral Clustering for Networks 9

Algorithm 3 MOSC via Random Walks (MOSC-RW)

Input: G = (V, E), mixing parameter λ
Output: Two node sets S, S̄
1: Compute the matrix H as defined in Eq (5).
2: Compute the second largest eigenvector v of H.
3: v← sorted ordering of v
4: {S, S̄} ← sweep cut of v w.r.t. a cut criterion.

walk. For the first-order random walk, the walker jumps from the current node i
to a neighbour j with probability P(i, j) = 1

D(i,i) . For the second-order random

walk in A, A(i, j) is the probability of the following random process: supposing
the walker is at vertex i, it first samples a vertex k with probability 1

n , then in
the case that some neighbour k of i is sampled and i, j, k forms a triangle, the
walker jumps from i to j with probability 1/WT (i, k), where WT (i, k) is the
number of triangles containing both i and k.

Complexity analysis. The running time of MOSC-RW is again dominated
by the time of finding all the triangles and the approximate eigenvector, and
thus asymptotically the same as the running time of MOSC-GL. However, since
MOSC-RW involves tensor construction, normalisation and averaging, it is more
complex than MOSC-GL in implementation.

3.3 Multiple Clusters and Higher-order Cheeger Inequalities

To cluster a network into k > 2 clusters based on mixed-order structures, MOSC-
GL and MOSC-RW follow the conventional SC [33]. Specifically, MOSC-GL
treats the first k row-normalised eigenvectors of LX as the embedding of nodes
that can be clustered by k-means. Similarly, MOSC-RW uses the first k eigen-
vectors of H as the node embedding to perform k-means.

Regarding performance guarantee, following [4] and [14], MOSC-GL and
MOSC-RW do not have performance guarantee with respect to higher-order
Cheeger inequalities. However, by replacing k-means with a different clustering
algorithm, MOSC-GL can derive a theoretical performance guarantee [14].

3.4 Automatic Determination of λ

The mixing parameter λ is the only hyperparameter in MOSC. To improve the
usability, we design schemes to automatically determine its best value λ∗ from
a set Λ based on the quality of output clusters [5, 15, 36]. For bi-partitioning
networks, the cut criterion used to obtain output clusters can help determine
the best λ∗ from Λ. For multiple partitioning networks, we can use the sum of
triangle densities of individual clusters to determine the best λ∗ from Λ.

Specifically, for each λ′ ∈ Λ, let {Sλ′ , Sλ′} denote the MOSC bi-partitioning
clusters obtained with λ = λ′. For a specific minimisation or maximisation cut

10 Y. Ge et al.

criterion τ (e.g., edge conductance φ2), we choose λ to be the one that optimises
τ , i.e.,

λ∗ = arg min
λ′∈Λ

τ(Sλ′) or λ∗ = arg max
λ′∈Λ

τ(Sλ′),

respectively.

For the case of multiple partitions, we propose a triangle-density-based scheme
to determine λ as follows:

λ∗ = arg max
λ′∈Λ

k∑
c=1

∑
vi,vj ,vk∈Sc(λ′) T (i, j, k)

6|Sc(λ′)|
,

where Sc(λ
′) denotes the c-th cluster resulted from λ′, and the factor 1/6 is used

to avoid repeated count of triangles in an undirected graph.

3.5 Structure-Aware Error Metrics

If we have ground-truth clusters available, we can use them to measure per-
formance of clustering algorithms. Existing works commonly use mis-clustered
nodes [11] or related metrics (e.g., normalised mutual information (NMI) [2]). We
denote the ground-truth partition of G with k clusters as S∗ = {S∗1 , S∗2 , . . . , S∗k}
and a candidate partition to be evaluated as S = {S1, S2, . . . , Sk}. The mis-

clustered node metric is defined as εN (S∗,S) =
min
σ

∑k
c=1 |S

∗
c⊕Sσ(c)|

|V| , which mea-

sures the difference between two partitions S∗ and S, where σ indicates all pos-
sible permutations of {1, 2, . . . , k} and ⊕ denotes the symmetric difference
between the two corresponding sets. A smaller εN indicates a more accurate
partition.

A limitation of the above metric is that it fails to truly reflect the errors
made in preserving structures such as edges or triangles. Our studies (Fig. 3 in
Sec. 4.2) show that mis-clustered nodes do not have a monotonic relationship
with mis-clustered edges or triangles. That is, a smaller number of mis-clusterd
nodes does not imply a smaller number of mis-clustered edges or triangles, and
vice versa. This motivates us to propose two new error metrics εE and εT that
measure the mis-clustered edges and triangles, respectively. These new metrics
can provide more insights in the preservation of edges and triangles.

Specifically, we define εE as

εE(S∗,S) =

∑k
c=1EN (S∗c)−max

σ

∑k
c=1EN (S∗c ∩ Sσ(c))

|E|
, (6)

where EN (S) and |E| are the number of edges in S and G respectively. We can
define εT similarly by replacing EN (S) and |E| in Eq. (6) with TN (S) and |T|,
where TN (S) and |T| are the number of triangles in S and G.

Mixed-Order Spectral Clustering for Networks 11

4 Experiments

This section aims to evaluate MOSC against existing SC methods. In addition,
we will examine the effect of hyperparameter λ, and gain insights from the newly
designed error metrics and show computational time.

4.1 Experimental Settings

Datasets. The experiments were conducted on five popular real-world networks
with very different triangle densities: 1) Zachary’s karate club (Zachary) [38],
2) Dolphin social network (Dolphin) [18], 3) American college football (Foot-
ball) [22], 4) U.S. politics books (Polbooks) [22], and 5) Political blogs (PBlogs) [1].
The above networks have ground-truth communities. Their statistics are sum-
marised in Table 1.

Compared algorithms. We evaluate MOSC-GL and MOSC-RW against
the following five state-of-the-art methods, including both edge-based SC and
triangle-based SC: 1) SC-Shi [29], 2) SC-Ng [24], 3) Tensor Spectral Cluster-
ing (TSC) [3], 4) Higher-order SVD (HOSVD) [10], and 5) Motif-based SC
(MSC) [4] / Tensor Trace Maximisation (TTM) [11] (We have verified that
TTM and MSC are equivalent).

We study two versions for each MOSC: 1) MOSC (λ = 0.5): MOSC with a
fixed (recommended) λ value of 0.5; 2) MOSC (Auto-λ): MOSC with automat-
ically determined λ. We set λ values from 0 to 1 with step 0.1.

Evaluation metrics. We use the proposed structure-aware metrics, mis-
clustered edges (εE) and triangles (εT). We also use two popular metrics, mis-
clustered nodes (εN) [11] and NMI [2].

Selection of cut criteria. We study seven different cut criteria covering
second-order ones: 1) 2nd-conductance [27], 2) 2nd-Ncut [29], 3) 2nd-expansion [8],
and third-order ones: 4) 3rd-conductance [3], 5) 3rd-Ncut [17], 6) 3rd-expansion [3],
7) 3rd-Nassociation [11] and also k-means [19]. By doing this, second-order meth-
ods can use third-order cut criteria (e.g., SC-Shi+3rd-conductance), and third-
order methods can use second-order cut criteria (e.g., TSC+2nd-Ncut). For fair
comparison, we show the performance of all algorithms with the best cut criteria
for bi-partitioning networks. For multi-partitioning networks, all algorithms use
k-means.

Reproducibility. We used Matlab implementation of compared algorithms
released by the authors of MSC,2 HOSVD,3 and TSC via multilinear PageRank.4

We followed guidance from the original papers to set their hyperparameters. All
experiments were performed on a Linux machine with one 2.4GHz Intel Core
and 16G memory. We have released the Matlab implementation for MOSC.5

2 https://github.com/arbenson/higher-order-organization-matlab
3 http://sml.csa.iisc.ernet.in/SML/code/Feb16TensorTraceMax.zip
4 https://github.com/dgleich/mlpagerank
5 https://bitbucket.org/Yan_Sheffield/mosc/

12 Y. Ge et al.

Table 1. Statistics of the five networks. PBlogs has significantly higher triangle density
than the others. #Interaction edges are the number of edges among the ground-truth
communities.

Network |V| |E| Triangle density #Communities #Interaction edges

Zachary 34 78 1.32 2 11
Dolphin 62 159 1.53 2 6
Polbooks 105 441 5.33 3 70
Football 115 613 7.04 12 219

PBlogs 1,490 16,716 67.80 2 1,576

4.2 Performance Comparison

The clustering results on five networks are summarised in Table 2. We have three
observations:

1. MOSC-GL(Auto-λ) improves by 5.4% (from 0.796 to 0.839) over the best
competing algorithm (SC-Shi) in average NMI of four networks with low
triangle density. For the remaining PBlogs with high triangle density, MOSC-
RW(Auto-λ) improves by 18.9 times (from 0.023 to 0.458) over the best
competing algorithm (MSC). It demonstrates that automatic determination
of λ is effective in these scenarios. We visualise the obtained clusters by
MOSC-GL(Auto-λ) for Polbooks in Fig. 2.

2. MOSC-GL and MOSC-RW have different performance w.r.t triangle density
of networks. We will give a discussion at the end of this section.

3. The value of mis-clustered node (εN) does not have a monotonic relation-
ship with the value of mis-clustered edge (εE)/triangle (εT). Fig. 3 shows
an example that HOSVD vs. TSC on εN has non-monotonic relationship
with εT . Specifically, TSC achieves lower value of error nodes than that of
HOSVD, but it loses more triangles than HOSVD. It demonstrates that the
mis-clustered node cannot reflect errors in structures, while our proposed
structure-aware metrics (εE/εT) can gain insights on the quality of struc-
ture preservation.

From the above results, we see that MOSC-GL and MOSC-RW have differ-
ent performance on networks with different triangle densities. MOSC-RW tends
to be better for networks with high triangle densities while MOSC-GL tends
to be better for networks with low triangle densities. For MOSC-GL, WT can
dominate WX in WX = (1− λ)WT + λW, especially for dense networks. Each
entry of WT denotes the number of triangles containing the corresponding edge
while W is a binary matrix. Therefore, for most non-zero pairs (i, j), WT (i, j)
is much larger than W(i, j), especially for dense networks, which makes deter-
mining the appropriate λ more difficult. In contrast, MOSC-RW does not have
such issue since A and P are normalised and thus they are in similar scales be-
fore the linear combination. According to the above, we recommend MOSC-GL
for networks with low triangle density while MOSC-RW for networks with high
triangle density.

Mixed-Order Spectral Clustering for Networks 13

Table 2. Clustering performance of algorithms with the best cut criteria. The best
is in bold and the second best is underlined. A larger NMI indicates a better result,
while a smaller εN/εE/εT indicates a better result. Note that there are ties. Avg. NMI
is the average NMI for each algorithm on the first four datasets.

Edge based Triangle based MOSC-RW MOSC-GL

Method SC-Shi SC-Ng HOSVD MSC TSC λ = 0.5 Auto-λ λ = 0.5 Auto-λ

Z
a
ch

a
ry

NMI 0.837 0.837 0.069 0.732 0.677 0.837 0.837 0.837 0.837
εN 0.029 0.029 0.412 0.059 0.059 0.029 0.029 0.029 0.029
εE 0.026 0.026 0.436 0.038 0.038 0.026 0.026 0.026 0.026
εT 0.022 0.022 0.356 0.022 0.022 0.022 0.022 0.022 0.022

F
o
o
tb

a
ll NMI 0.883 0.905 0.896 0.924 0.866 0.924 0.924 0.900 0.931

εN 0.200 0.130 0.139 0.087 0.226 0.087 0.087 0.130 0.078
εE 0.103 0.060 0.059 0.011 0.114 0.011 0.011 0.059 0.011
εT 0.122 0.062 0.048 0.002 0.136 0.002 0.002 0.048 0.002

P
o
lb

o
o
k
s NMI 0.575 0.542 0.092 0.542 0.180 0.575 0.575 0.563 0.589

εN 0.162 0.171 0.533 0.171 0.524 0.162 0.162 0.162 0.162
εE 0.061 0.075 0.420 0.077 0.637 0.061 0.061 0.063 0.048
εT 0.013 0.018 0.418 0.014 0.686 0.013 0.013 0.013 0.002

D
o
lp

h
in NMI 0.889 0.889 0.081 0.536 0.582 0.889 0.889 0.889 1.000

εN 0.016 0.016 0.306 0.113 0.097 0.016 0.016 0.016 0.000
εE 0.006 0.006 0.270 0.063 0.050 0.006 0.006 0.006 0.000
εT 0.000 0.000 0.305 0.000 0.011 0.000 0.000 0.000 0.000

Avg. NMI 0.796 0.793 0.285 0.684 0.576 0.806 0.806 0.797 0.839

P
B

lo
g
s NMI 0.007 0.007 0.014 0.023 - 0.012 0.458 0.098 0.016

εN 0.450 0.491 0.454 0.412 - 0.442 0.154 0.321 0.434
εE 0.437 0.437 0.437 0.434 - 0.437 0.011 0.437 0.437
εT 0.360 0.360 0.360 0.360 - 0.360 0.005 0.360 0.360

Fig. 2. Communities in Polbooks detected
by MOSC-GL(Auto-λ).

N T

0.3

0.4

0.5

0.6

0.7

HOSVD

TSC

Fig. 3. Non-monotonic relationship be-
tween εN and εT on Polbooks.

4.3 Effect of λ

The mixing parameter λ is the only hyperparamter in MOSC. To gain insight
of MOSC, we conduct sensitivity analysis on λ as shown in Fig. 4 w.r.t. NMI.
We can see that the choice of λ can significantly affect the performance while
there are large regions of stable performance as well. This was the motivation

14 Y. Ge et al.

0 0.2 0.4 0.6 0.8 1
0.86

0.88

0.9

0.92

0.94

NMI

MOSC-GL

MOSC-RW

(a) Football

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NMI

MOSC-GL

MOSC-RW

(b) Dolphin

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

NMI

MOSC-GL

MOSC-RW

(c) PBlogs

Fig. 4. Sensitivity analysis of λ on Football, Dolphin and PBlogs w.r.t NMI.

Zachary Dolphin PBlogs
10

-2

10
-1

10
0

10
1

10
2

C
o

m
p

u
ta

ti
o

n
a
l
ti

m
e
 (

s
)

SC-Shi

SC-Ng

HOSVD

MSC

MOSC-RW

MOSC-GL

Fig. 5. Computational time (in log scale).

of developing schemes to automatically determine the best λ. For PBlogs, Ta-
ble 2 shows that MOSC-RW achieves significantly better performance than the
others. From Fig. 4(c), MOSC-RW does not have good performance for large λ
values (>0.4). Fortunately, benefiting from automatic λ determination scheme,
an outstanding performance has been achieved.

4.4 Computational Time

Figure 5 compares the computational time of different methods on three net-
works, where k-means was used to obtain the final clusters to avoid the effect
of cut criteria. MOSC-GL is more efficient than MOSC-RW in all cases because
MOSC-GL does not have tensor construction and tensor dimension reduction.
For PBlogs, HOSVD and MOSC-RW are time-consuming, because both involve
tensor construction and operations that are much more expensive than that in
networks with low triangle density. SC-shi and SC-Ng are slower than MOSC-
RW and MOSC-GL on Zachary and Dolphin since they use use more time on
converging of k-means step. But for PBlogs that is dense and large, MOSC-RW
spends lots of time on constructing the triangle tensor while MOSC-GL is scal-
able to construct the triangle matrix. Our future work will apply our algorithms
to large network datasets.

Mixed-Order Spectral Clustering for Networks 15

5 Conclusion

This paper proposed two mixed-order spectral clustering (MOSC) methods,
MOSC-GL and MOSC-RW, which model both second-order and third-order
structures for network clustering. MOSC-GL combines edge and triangle ad-
jacency matrices with theoretical performance guarantee. MOSC-RW combines
first-order and second-order random walks with a probabilistic interpretation.
We designed a scheme to automatically determine the mixing parameter and
proposed new structure-aware error metrics for structure evaluation. Experi-
ments on five real-world networks showed that MOSC algorithms outperform
existing SC methods on the whole.

Acknowledgement

This work is supported by the Amazon Research Awards. This article solely
reflects the opinions and conclusions of its authors and not Amazon.

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election:
divided they blog. In: Proceedings of the 3rd International Workshop on Link
Discovery. pp. 36–43. ACM (2005)

2. Ana, L., Jain, A.K.: Robust data clustering. In: CVPR. vol. 2, pp. II–II (2003)

3. Benson, A.R., Gleich, D.F., Leskovec, J.: Tensor spectral clustering for partitioning
higher-order network structures. In: SDM. pp. 118–126. SIAM (2015)

4. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex
networks. Science 353(6295), 163–166 (2016)

5. Chakraborty, T., Dalmia, A., Mukherjee, A., Ganguly, N.: Metrics for community
analysis: A survey. ACM Computing Surveys (CSUR) 50(4), 54 (2017)

6. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large
networks. Physical Review E 70(6), 066111 (2004)

7. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal
23(2), 298–305 (1973)

8. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph clustering and minimum cut
trees. Internet Mathematics 1(4), 385–408 (2004)

9. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

10. Ghoshdastidar, D., Dukkipati, A.: Consistency of spectral partitioning of uniform
hypergraphs under planted partition model. In: NIPS (2014)

11. Ghoshdastidar, D., Dukkipati, A.: Uniform hypergraph partitioning: Provable ten-
sor methods and sampling techniques. JMLR 18(50), 1–41 (2017)

12. Granovetter, M.S.: The strength of weak ties. In: Social Networks, pp. 347–367.
Elsevier (1977)

13. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science
311(5757), 88–90 (2006)

14. Lee, J.R., Gharan, S.O., Trevisan, L.: Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM (JACM) 61(6), 37 (2014)

16 Y. Ge et al.

15. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for
network community detection. In: WWW. pp. 631–640. ACM (2010)

16. Li, P., He, N., Milenkovic, O.: Quadratic decomposable submodular function min-
imization. In: NIPS. pp. 1062–1072 (2018)

17. Li, P., Milenkovic, O.: Inhomogoenous hypergraph clustering with applications. In:
NIPS. pp. 2305–2315 (2017)

18. Lusseau, D.: The emergent properties of a dolphin social network. Proceedings of
the Royal Society of London B: Biological Sciences 270, S186–S188 (2003)

19. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

20. Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS (2001)
21. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network

motifs: simple building blocks of complex networks. Science 298(5594) (2002)
22. Newman, M.E.: Modularity and community structure in networks. Proceedings of

the National Academy of Sciences 103(23), 8577–8582 (2006)
23. Newman, M.E.: Communities, modules and large-scale structure in networks. Na-

ture Physics 8(1) (2012)
24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-

rithm. In: NIPS. pp. 849–856 (2002)
25. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving

graph embedding. In: KDD. pp. 1105–1114. ACM (2016)
26. Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Notices of the

AMS 56(9), 1082–1097 (2009)
27. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
28. Serrour, B., Arenas, A., Gómez, S.: Detecting communities of triangles in complex

networks using spectral optimization. Computer Communications 34(5) (2011)
29. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on PAMI

22(8), 888–905 (2000)
30. Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biology 2(11), e369 (2004)
31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-

mation network embedding. In: WWW. pp. 1067–1077 (2015)
32. Tsourakakis, C.E., Pachocki, J., Mitzenmacher, M.: Scalable motif-aware graph

clustering. In: WWW. pp. 1451–1460 (2017)
33. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing

17(4), 395–416 (2007)
34. Wu, T., Benson, A.R., Gleich, D.F.: General tensor spectral co-clustering for

higher-order data. In: NIPS. pp. 2559–2567 (2016)
35. Xu, J., Wickramarathne, T.L., Chawla, N.V.: Representing higher-order depen-

dencies in networks. Science Advances 2(5), e1600028 (2016)
36. Yang, J., Leskovec, J.: Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems 42(1), 181–213 (2015)
37. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-

tering. In: KDD. pp. 555–564. ACM (2017)
38. Zachary, W.W.: An information flow model for conflict and fission in small groups.

Journal of Anthropological Research 33(4), 452–473 (1977)
39. Zhou, D., Zhang, S., Yildirim, M.Y., Alcorn, S., Tong, H., Davulcu, H., He, J.: A

local algorithm for structure-preserving graph cut. In: KDD. pp. 655–664 (2017)

