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Abstract. A diverse range of computational models have been proposed
to extract temporal patterns from clinical time series data for each pa-
tient and among patient group for predictive healthcare, including mul-
tivariate regression, neural network, and decision tree, etc. These models
typically learn an analytical mapping from the numerical or categorical
patients’ medical data to the targeted labels. However, the common re-
lations among patients (e.g., share the same doctor, or receive the same
medical treatments) were rarely considered. In this paper, we represent
the relation between patients and clinicians by bipartite graphs to explic-
itly address relations such as from which clinician a patient is diagnosed
or offered a medical service. We then solve for the top eigenvectors of
the Laplacian matrix of the bipartite graph, and include the eigenvec-
tors as latent representations of the similarity between patient-clinician
pairs into a time-sensitive prediction model. We conducted experiments
using real-world data to predict the initiation of first-line treatment for
Chronic Lymphocytic Leukemia (CLL) patients. Results show that the
relational similarity uncovered from the patient-clinician bipartite graph
can enhance prediction accuracies over multiple baselines, for example,
a 5% increment over the long short-term memory sequential model in
terms of area under precision-recall curve.

Keywords: Healthcare data mining · Time Series Analysis · Graph
Laplacian.

1 Introduction

Recent years have witnessed an explosion in the growth of the amount of digital
information in electronic health records, which provides great opportunities for
applications such as healthcare analytics and clinical informatics [25, 24]. Among
the electronic health data, clinical time series is one major type. More specifically,
the medical records of a patient visiting one or more clinical sites, including
diagnoses, laboratory tests, prescriptions, etc., are time-stamped and can be
arranged in sequential orders.
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Over the years, many computational models have been proposed for dis-
ease detection [10, 11], disease progression [1], patient subtyping [2, 4], and many
more, based on clinical time series data. A core challenge regarding studies of
time series data is to determine the similarity of one time series with respect
to another, which is central to tasks such as forecasting, mining, and clustering.
Over the years several similarity measures for time series data have been pro-
posed, such as cross-correlation, dynamic time warping [20], and edit distance
[12, 5]. A good candidate of similarity measure is expected to be able to handle
high-dimensional data, while being fast, scalable, and efficient [21].

A disease progression model is designed to predict the development of po-
tential treatments for many slowly progressing diseases, e.g. Alzheimer’s disease,
by detecting more granular stages as compared to those defined in clinical di-
agnosis [22]. A primary goal of oncology pharmaceutical market research is to
develop a quantitative prediction model that leverages machine learning meth-
ods and patients medical records to perform automated and accurate prediction
of disease progression, thus can help raise awareness of treatment options to the
relevant clinicians, and is also beneficial to early disease intervention. Longitudi-
nal clinical time series along with related patient or physician data is important
in informing disease progression patterns, and motivating many deep learning
based disease progression models including recurrent neural network (RNN),
attention model, and graph embedding [7, 9, 1, 4, 23].

Despite these initial success, the relational structure between patients and
clinicians has long been overlooked and is of great potentials to enhance predic-
tion accuracy. The assumption is that patients with the same disease who visit
the same clinicians tend to receive similar treatments, which can be arguably at-
tributed to that clinicians follow a set of common medical knowledge, and more
likely make similar decisions for patients with the same disease.

We propose to model the patient-clinician relational structure as a bipartite
graph, in which the two disjoint sets of vertices represent the patients and the
clinicians, respectively; the set of edges records the number of visits made by
each patient with each clinician. We note that many patients visit different
clinicians for diagnosis and follow-up treatments. Thus we create two graphs,
one for patients and their diagnosis clinicians, and another for patients and their
follow-up clinicians. An example of the graph using patients’ clinical data from
IQVIA’s prescription and claim database is given in Figure 1. Here we show six
patients diagnosed with Chronic Lymphocytic Leukemia (CLL), and their visited
clinicians for both diagnosis and follow-up treatments. CLL is a type of cancer
in which the bone marrow makes too many lymphocytes. For CLL patients,
there is normally an observational period before starting first-line treatment.
We restrict the follow-up clinicians to oncologists and hematologists for better
relevance. We then apply spectral graph analysis to solve for the top eigenvectors
of the graph Laplacian, and take the eigenvectors as latent representations of
the similarity between patient-clinician pairs. The extracted features capture the
latent proximity of patients who visit the same clinicians, and can enhance the
prediction accuracy of a variety of disease progression models.
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Fig. 1. Illustration of the bipartite graph between CLL patients and diagnosis/follow-
up clinicians. Follow-up clinicians are restricted to oncologists and hematologists. Di-
agnosis and follow-up clinicians can overlap.

As a key contribution, to our best knowledge, this work is the first disease
progression/detection model that leverages graph theory to exploit the relational
similarity of clinician-visiting from patients’ clinical time series data. Using the
patients’ clinical medical data from IQVIA’s database, we show that the pro-
posed similarity features can improve the performance of a wide choice of ma-
chine learning models, from XGBoost [6] to more recent deep learning based
models, e.g. convolutional neural network (CNN) and long short-term memory
(LSTM).

2 Related Works

Medical treatment prediction is a core research task of disease progression mod-
eling. Recently, many deep learning models have made rapid advancements on
this topic. In [9], a two-level attention model was designed to detect influential
past visits and significant clinical variables for better prediction accuracy and
interpretability. In [8], a graph-based attention model was proposed to extract
hierarchical information from medical oncologies and improve RNN-based rare
disease prediction. In [15], a bi-directional RNN was designed to remember in-
formation of both the past and future visits based on three attention mechanism
to measure the relationship of different visits for prediction. In [4], a RNN archi-
tecture through dynamically matching temporal patterns was proposed to learn
the similarity between two longitudinal patient record sequences for personal-
ized prediction of Parkinson’s Disease. Other similar approaches have also been
proposed [17, 16].
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Table 1. List of notations defined in this paper.

Notation Description

D Clinical medical records
S Patients’ sequences of visits
I Patients’ demographics
U ,V Sets of clinicians and patients.
M = |U|, N = |V| Sizes of U and V.
E = {{wij}Mi=1}Nj=1 Set of edges connecting U and V; wij is the

count of patient j visiting clinician i.
G = {U ,V, E} Bipartite graph for patients and their vis-

ited clinicians
A Adjacency matrix of G
D Degree matrix of A
L Laplacian matrix of G
{Xi}Ki=1 Relational similarity features

3 Methods

3.1 Problem Formulation

We let D denote patients’ clinical medical records. For a patient p, D(p) =

{S(p), I(p)}, where S(p) = [s
(p)
1 , s

(p)
2 , . . . , s

(p)
T ] is the sequence of visits and I(p)

includes demographics and related medical features. Each visit s
(p)
t consists of

information such as diagnoses, procedures, prescriptions, visited clinicians, etc.
The goal of prediction is to learn f : D(p) 7→ y(p), where y(p) is the label indi-
cating if the patient will start treatment in the next time window.

We model the patient-clinician relation as a bipartite graph G = {U ,V, E}
over D, where U , V are the sets of clinicians and patients, E is the set of edges
connecting U and V, with each weight wij denoting the count of patient j visiting
clinician i. Table 1 lists the notations we used in the paper.

3.2 Extracting Relational Similarities from Patients’ Clinical Time
Series via Graph Laplacian

The algorithm for extracting relational similarity is motivated by spectral clus-
tering [19], in which data points are considered as nodes of a similarity graph
and mapped to a low-dimensional space where they can be segregated to form
clusters.

Firstly, we construct K bipartite graphs {Gi}Ki=1 from D, where each Gi =

{Ui,V, Ei} and Ei = {{wij}|Ui|i=1}
|V|
j=1. We let M = |Ui| and N = |V| for simplicity.

V represents patients thus remains the same across all graphs.

Secondly, for each graph Gi we construct the adjacency matrix A. Since in
Gi we ignore interaction within patients (or clinicians), A is block sparse, and
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Algorithm 1 Graph-based Similarity Feature Extraction

Input: Bipartite graphs {Gi}Ki=1

Output: {Xi}Ki=1

for i = 1 to K do
Gi = {Ui,V, Ei},M = |Ui|, N = |V|

A =

[
0M,M B
BT 0N,N

]
(where B[i, j] = wij)

D = diag({
M+N∑
j=1

A[i, j]}M+N
i=1 )

L = D−1/2AD−1/2

Xi = [e1, e2, . . . , ek] = eigendecomp(L)
for α = 1 to M +N do

Xi[α, :] = Xi[α, :]/(
∑
βXi[α, β]2)1/2

end for
end for

takes the form as

[
0M,M B
BT 0N,N

]
, where B ∈ RM×N is the matrix representation

of Ei.
Thirdly, we compute the Laplacian matrix of Gi as L = D−1/2AD−1/2, where

D is a diagonal matrix whose (i, i)-th element is the sum of the i-th row of A.
Lastly, we compute the top k eigenvectors of L, i.e. Xi = [e1, e2, . . . , ek] ∈

R(M+N)×k, using algorithms such as Implicitly Restarted Arnoldi Method [14]
that is suitable to process large sparse matrices. Xi is normalized such that each
row of Xi has an L2-norm of 1.

For a patient p, we extract the corresponding row from {Xi}Ki=1 as the rela-
tional similarity features. The complete algorithm is given in Algorithm 1.

4 Experiments and Results

4.1 Cohort

We extract data from IQVIA longitudinal prescription (Rx) and medical claims
(Dx) database, including hundreds of millions of patient clinical records. In this
study, we selected all the patients diagnosed with CLL from 01-2017 to 12-2018
from the IQVIA database and kept only the patients with complete Rx/Dx
information. We split the time period from 07-2017 to 12-2018 into 3 equal
intervals. Within each interval, we defined the positive cohort as patients who
were diagnosed with CLL before the interval and started treatment within the
interval, and the negative cohort as patients who were diagnosed with CLL before
the interval, but did not start treatment during the interval. The final positive
and negative cohorts have 11,259 and 109,563 patient profiles, each of which
contains a medical sequence and a feature vector including demographics and
relational similarity features, respectively.

In time series forecasting, it is common practice to reserve the last part of
each time series for testing, and use the rest of the series for training [3]. This is
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to avoid using information from the future to predict past events. As a result, we
cannot apply conventional train/test split of data such as k-fold cross-validation
that would shuffle data randomly. Therefore, the 07-2018 to 12-2018 interval is
hold out for model testing, and the rest intervals are used for model training.

4.2 Feature preparation

BOW features: For each interval, we pulled one-year patient clinical records
(diagnosis, procedure, etc.) before the interval. We divided the one-year look-
back into four quarters, and used Bag-of-Words (BOW) [18] to extract features
(counts of occurrences of services) from the records within each quarter. Med-
ical services with less than 1% occurrences in the entire dataset were ignored.
Eventually, we obtained 329 BOW features.

Demographics and medical features: Demographic features include age
and gender. Medical features are 11 clinical services from patients’ medical his-
tory, which are chosen by clinical experts and have been shown relevance to
treatment initiation. Both demographics and medical features are converted to
categorical variables.

Vectorized clinical time series: The medical service codes in the patients’
clinical time series were converted to 300-dimensional dense vectors through a
pre-trained embedding.

Relational similarity: We constructed two bipartite graphs, one for pa-
tients and their diagnosis clinicians, and another for patients and their follow-up
clinicians. We took the top 5 eigenvectors from each of the two Laplacian matri-
ces derived from the two graphs using Algorithm 1, resulting in a 10-dimensional
vector as the relational similarity feature for one patient.

4.3 Evaluation

Because of the imbalance of positive and negative samples in the cohort, we use
precision-recall area-under-curve (PR-AUC) and precision@k as the metrics to
evaluate model performance.

All models are built using the training data set and evaluated using the
testing data set. We use Adam optimizer [13] with a default learning rate of
1e-4. The number of training epochs for each model is 50 and an early stopping
criterion is invoked if the performance does not improve in 10 consecutive epochs.
All models are implemented in Keras with Tensorflow backend and tested on
a system equipped with 128GB RAM, 16 Intel(R) Core Xeon(R) E5-2683 v4
2.10GHz CPUs, and Nvidia Tesla P100-PCIE-16GB.

4.4 Models and Performance

To demonstrate the robustness of the proposed method, we have applied it on
three baseline models for comparison: XGB, CNN, and LSTM. We evaluate the
performance of these models with and without the relational similarity feature.
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Fig. 2. Comparison of baseline models with and without relational similarity feature
measured in PR-AUC.

For fairly comparison, we also introduce the diagnosis clinicians and follow-up
clinicians IDs to the baseline models, to guarantee that the proposed method
and baseline model leverage the same amount of information.

XGB: A tree boosting regression model implemented in XGBoost with 500
estimators. Input features include BOW features, demographics, medical fea-
tures, and relational similarity features.

CNN: A 4-layer CNN with a structure of 1×1(128)−2×2(128)−3×3(128)−
5×5(128) (kernel size/number of kernels), followed by two dense layers. Clinical
time series are fed into the first CNN layer. Features of relational similarity,
demographics, and medical are concatenated with flattened CNN features at the
first dense layer.

LSTM: A bi-directional LSTM handles the clinical time series. The hid-
den dimension of the LSTM is 256. The maximum hidden states at each time
step of the top-level LSTM are concatenated with relational similarity features,
demographics, and medical features, and processed by two dense layers.

Performance of the models with and without the relational similarity feature
is evaluated in PR-AUC and precision@k, and shown in Figure 2 and 3. Among
all the models, the feature number of proposed and baseline are on comparable
level, e.g., XGB-baseline has 1,331, and XGB-proposed has 1,339 features.

A sampling of the precision@k curve is provided in Table 2. The results fur-
ther confirm that by capturing the relational similarity feature, we can improve
the prediction accuracy of all baseline models, suggesting the universal effec-
tiveness of relational similarity feature for a wide range of model structures.
When K goes large, the proposed method consistently outperforms the baseline
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Fig. 3. Comparison of baseline models with and without relational similarity feature
measured in precision@k.

model, although the incremental gradually become marginal, e.g., in LSTM the
improvement is 2.6%, 2.2%, 0.6%, when K equals 5,000, 10,000, 50,000, respec-
tively.

5 Conclusions

In this paper, we proposed a graph-based algorithm to extract latent relational
similarity from patients’ clinical time series. Experimental results using real-
world data show that the proposed feature can improve the prediction accuracy
of a wide range of model structures. We envision that the relational similarity can
also enhance model performance on other tasks, such as rare disease detection
or patient subtyping. In its current form, the algorithm is operating on a two-
dimensional feature space, i.e. patients and clinicians. In the future, we will add
medical services as another dimension into the feature space, and thus enable
the application of more advanced signal processing techniques such as tensor
decomposition to uncover more useful information from the multidimensional
feature inputs.
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