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Abstract. We consider the problem of community detection. Although
network embedding and representation learning methods are recently
getting popular, we claim that they fall into suboptimal solutions for
community detection, because they are based on indirect approach, which
requires to apply clustering methods such as k-means to the embed-
ding/representation vectors. We present PPNMF, proximity preserving
nonnegative matrix factorization for community detection. The idea of
PPNMF is three-hold. 1) PPNMF is based on direct approach: it directly
minimizes its loss function for community detection. 2) Users can con-
trol the importance of observed edges over unobserved edges. 3) PPNMF
can precisely capture the effects of the first-order and second-order prox-
imities of vertexes to communities. Also, PPNMF employs the Adamic
Adar index as the second-order proximity. The experiments validate that
PPNMF performs better or comparable to existing methods in various
real datasets for the tasks of community detection.
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1 Introduction

Graph is a fundamental data structure consisting of vertexes and their relation-
ships. Graphs and network are ubiquitous in many application domains, such as
web graphs [8], social networks [9], and paper citation networks [17]. Of partic-
ular interest, community detection is one of the most widely used techniques for
graph processing. A recent paper on the statistics of graph processing usage [25]
reports ”Clustering is the most popular computation performed, while commu-
nity detection is the most popular problem solved using machine learning”.

There are many recent work for community detection methods [13, 33, 27, 32]
and network embedding and representation learning methods [22, 10, 28–30]. The
community detection methods directly obtain communities by minimizing their
own loss functions for the purpose of community detection. So, they effectively
capture mesoscopic structure of networks. In contrast, the network embedding
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and representation learning methods are also used for community detection, but
in indirect way. That is, they first obtain embedding/representation vectors of
vertexes and, then they apply traditional clustering methods (such as k-means)
to the vectors. Since the network embedding and representation learning meth-
ods are designed to capture microscopic structure of networks, they are not
suitable for community detection. In addition, network embedding methods ob-
tain distributed representations of vertexes by minimizing their loss functions
regardless of the community structure either linear or non-linear, so the dis-
tributed representations may not be suitable for k-means. Therefore, we claim
that they fall into suboptimal solutions for community detection (we validate
this conjecture in our experiments). These investigations suggest that we should
take a direct approach for effective community detection.

As for the existing direct methods, considerable improvements have been
made. Most of them are based on NMF, however there are still two fundamental
problems. First, they treat observed edges (non-zero elements in adjacency ma-
trix) and unobserved edges (zero elements) with equal importance. However, due
to the sparsity of networks, the number of the observed edges is much smaller
than the number of unobserved edges. So, the result of NMF is largely affected
more by unobserved edges than observed edges. This observation implies that we
should put larger importance on observed edges over unobserved edges, in partic-
ular for sparse networks. Second, there are many community detection methods
that take either the first-order proximity of vertexes (such as modularity-based
methods [18, 6]) or the second-order proximity (such as SCAN [31]) into account,
however, they do not use both proximities at the same time. This observation
implies that we should capture the both of their effects independently.

We present PPNMF, proximity preserving nonnegative matrix factorization
for community detection. The idea of PPNMF is as follows. 1) PPNMF di-
rectly minimizes its loss function for community detection. It does not require
additional step such as applying k-means clustering. 2) Users can control the
importance of observed edges over unobserved edges, so that we can detect com-
munity structure with higher quality. 3) PPNMF uses the first-order proximity
and the second-order proximity independently in its loss function, so that it
preserves both of their effects in community structure. Also, PPNMF employs
the Adamic Adar index [1] as for the second-order proximity, because it usually
provides higher performance compared to other proximities [16, 21]. Although
the second and the third ideas above is gradually getting popular in indirect ap-
proaches, there is no work on direct approaches that combine those ideas, as well
as employing the Adamic Adar index at the same time. We extensively made
experiments for various community detection and network embedding methods
on various real datasets. We confirm that PPNMF performs better than or com-
parable to the existing methods for the tasks of community detection. We also
confirm that our method is stable against the parameter selection.

The rest of this paper is organized as follows. We present our method in
Section 2. Section 3 gives the purpose and results of the evaluations. Section 4
gives the details of the related work. Section 5 concludes this paper.
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2 Proximity Preserving Nonnegative Matrix
Factorization for Community Detection

In this section, we present our method, PPNMF (Proximity Preserving Nonneg-
ative Matrix Factorization). PPNMF is designed as follows.

– PPNMF is based on direct approach for effective community detection. It
directly obtains a community assignment representation of vertexes by min-
imizing the loss function for community detection extended from SymNMF.

– PPNMF permits users to control the loss weight between observed edges and
unobserved edges in the loss function.

– PPNMF preserves both of the first-order and second-order proximities in the
community assignment representation of vertexes. That is, PPNMF takes
those proximities into its loss function independently.

First, we introduce our notations and preliminaries. Then, we present the
details of PPNMF.

2.1 Notations and preliminaries

We define terms and notations in Table 1. We denote matrices by bold uppercase
letters. R+ is the set of nonnegative real numbers.

Table 1: Terms and notations

Symbol definition

N number of vertexes
E number of edges
K number of communities

C = {c0, c1, ..., cK−1} communities

A ∈ RN×N
+ adjacency matrix

W ∈ RN×N
+ structural similarity matrix

V ∈ RN×K
+ community assignment matrix

B ∈ RN×N
+ loss weight matrix

J ∈ RN×N
+ matrix with all elements 1

Xij (i, j)-th entry of X
Tr(X) trace of X
||X||F Frobenius norm of X
xi i-th row vector of matrix X
� Hadamard product

Let G = (V, E) be a given undirected and unweighted network G3, where
V and E represent the vertex set and the edge set, respectively. We use two

3 In this paper, we use only unweighted networks. However, our model can be extended
to weighted networks.



4 Y.Ogawa et al.

matrices, adjacency matrix A and structural similarity matrix W to describe
the network. An entry of the adjacency matrix Aij represents the relationship
between vertex i and j. We have Aij = 1 if there is an edge between vertex i
and j, and Aij = 0 otherwise. An entry of the structural similarity matrix Wij

represents the neighborhood structural similarity between vertex i and j.
Generally, networks consist of multiple communities. Let C = {c0, c1, ..., cK−1}

denote communities, where ci represents i-th community. We assume that each
vertex belongs to a single community. We introduce two proximities between
vertexes before describing PPNMF model.

first-order proximity The first-order proximity represents the local pairwise
proximity between two vertices. We use the adjacency matrix to express the
proximity. The first-order proximity is the most fundamental information of ver-
tex relationship. Two vertexes connected with an edge are likely to belong to the
same community. So, the community structure of a network should preserve this
proximity. Actually, many community detection methods [33, 32, 27] and net-
work embedding methods preserve this proximity. However, due to the sparsity
of the network, the first-order proximity is insufficient to detect communities.
To resolve this issue, we employ second-order proximity as shown next.

second-order proximity The second-order proximity represents the similarity
of the neighborhood structure between two vertices. Two vertexes that share
many common vertexes are likely to belong to the same community even if the
vertexes do not connect directly. Many existing methods, such as LINE [28] and
MNMF [30], also preserve the second-order proximity. By combining both the
first-order and the second-order proximities, we can detect communities more
precisely and, in addition, the community detection result becomes more robust
to the sparsity of networks.

We employ the Adamic Adar index [1] for the second-order proximity, because
it achieves high performance in link prediction task [16]. We define the structural
similarity matrix W by using the idea of Adamic Adar index as follows.

Wij =
∑

u∈N(i)∩N(j)

1

log10(|N(u)|)
(1)

N(x) and |N(x)| denote the neighbor vertexes of vertex x and its size, respec-
tively.

2.2 PPNMF Model

Based on the above discussions, we present our PPNMF model. We can obtain
a community assignment matrix V from a given observed adjacency matrix A
by leveraging the idea of SymNMF [13]. SymNMF minimizes the following loss
function.

L = ||A− V V T ||2F , s.t.V ≥ 0 (2)
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V expresses which vertex belongs to which community. Each row and column of
V corresponds to a vertex and community, respectively. The community assign-
ment for each vertex i is decided by choosing the column with the largest value
in row vector vi.

Due to the sparsity of networks, the number of observed edges (non-zero
elements in A) is much smaller than that of unobserved edges (zero elements),
such as more than two or three orders of magnitude. Therefore, in the loss
function, we should mitigate the error penalty for zero elements more than non-
zero elements in A as follows.

L1st = ||(A− V V T )�B||2F , s.t. V ≥ 0 (3)

We define the loss weight matrix B = βA+ (1− β)(J −A), s.t 0.5 ≤ β ≤ 1.0.
β is a balancing parameter of the error penalty between zero elements and non-
zero elements in A. By introducing B, we can obtain a more precise community
assignment representation of vertexes for real world networks. β = 0.5 indi-
cates imposing penalty equally to zero elements and non-zero elements: This is
equivalent to a setting without using B.

Next, a pair of vertexes that shares many common vertexes should have a sim-
ilar community assignment representation. Accordingly, we exploit the second-
order proximity of a given network by minimize the following loss function.

L2nd =
∑
ij

Wij ||vi − vj ||2 , s.t. V ≥ 0 (4)

Now, we combine Equation 3 and 4 to preserve both of the first-order and
second-order proximities in our loss function. Since the first-order proximity is
more fundamental information than the second-order proximity, we design the
loss function to treat the first-order proximity as the primary target, while using
the second-order proximity as the secondary. The joint loss function is defined
as follows.

LPPNMF = L1st + λL2nd

= ||(A− V V T )�B||2F + λ
∑
ij

Wij ||vi − vj ||2 (5)

s.t. V ≥ 0

λ is a balancing parameter between the first-order proximity and the second-
order proximity.

Finally, let V be a community assignment matrix obtained by minimizing
LPPNMF , an reconstructed adjacency matrix Â can be generated as follows:

Â = V V T (6)

2.3 Optimization

The loss function of Equation 5 is not convex in V . Therefore, it is not realistic
to find global minimum of the function. We present an iterative algorithm to
achieve a local minimum.
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Updating Rule Equation 4 can be rewritten as:

L2nd = 2Tr(V TLV ) (7)

L = D −W , which is called graph Laplacian. D is a diagonal matrix whose
entries are column sum of W , Djj =

∑
lWjl. Therefore, the loss function is

rewritten to:

LPPNMF (V ) = ||(A− V V T )�B||2F + 2λTr(V TLV ) (8)

Let α be the Lagrange multiplier for constraint Vij ≥ 0, the partial deriva-
tives of the Lagrange L(V ;α) with V is

∂L
∂V

= −4(A�B2)V + 4((V V T )�B2)V + 4LV +α (9)

= −4(A�B2)V + 4((V V T )�B2)V + 4DV − 4WV +α

(10)

Using the KKT conditions αijVij = 0 and ∂L
∂V = 0, we obtain the following

equation:

−((A�B2)V +WV )ijVij + (((V V T )�B2)V +DV )ijVij = 0 (11)

Therefore, we get the following update rule:

Vij ← Vij
((A�B2)V +WV )ij

(((V V T )�B2)V +DV )ij
(12)

Algorithm 1 shows the overall optimization process in PPNMF, which con-
sists of two steps. In pre-training step, we first initialize the community assign-
ment matrix V randomly (line 2 in Algorithm 1). To achieve a better local
minimum, we pre-train V by SymNMF, which is a simple and effective method
for community detection (line 3-6 in Algorithm 1). Then, in main training step,
we update V according to Eq.(12) (line 8-11 in Algorithm 1). Finally, we obtain
the matrix V (line 12 in Algorithm 1). After the optimization, V stores com-
munity assignment information. In the matrix, each column corresponds to a
community. For each vertex, we choose the column index with the largest value
in its representation as its assigned community. Note: max-iter indicates the
number of the iterations we apply the update rule.

2.4 Computation complexity

The overall computation of PPNMF depends on the matrix multiplication in
the updating rules. Since the computation of the matrix product XY (X ∈
Rx×z

+ ,Y ∈ Rz×y
+ ) is O(xyz), the pre-training complexity and the main training

complexity are O((N2K+NK2)t) and O((N2K)t), respectively. t is the number
of iterations. Since usually K ≤ N , the overall computation complexity of our
method is O((N2K)t). Observe that this complexity is the same as that of
SymNMF, which is the base algorithm of our method.
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Algorithm 1 Optimization algorithm of PPNMF

Require: Adjacency matrix A, Structural similarity matrix W , Loss weight matrix
B

Ensure: Community assignment matrix V
1: pre-training step
2: initialize randomly V
3: training by SymNMF
4: for i = 1 to max-iter do
5: Vij ← Vij

(AV )ij
(V V TV )ij

6: end for
7: main training step
8: training by Eq. (12)
9: for i = 1 to max-iter do

10: Vij ← Vij
((A�B2)V +WV )ij

(((V V T )�B2)V +DV )ij

11: end for
12: return V

3 Experiments

We perform experiments to compare the performance of our method PPNMF to
those of state-of-the-art methods. We use six real network datasets with ground-
truth communities. We design the experiments to answer the following questions:

Q1 Can PPNMF obtain better community assignment representation of ver-
texes? (Section 3.3)

Q2 Is the second-order proximity essential for community assignment represen-
tation of vertexes? Should we control the importance of observed edges over
unobserved edges? (Section 3.4)

Q3 How largely the parameters affect the performance? (Section 3.5)

3.1 Datasets

We use six real networks, four social networks and two citation networks. We
show the statistics of the datasets in Figure 2.

Table 2: Statistics of datasets: N is the number of vertexes. E is the number of edges.
K is the number of ground-truth communities.

Dataset N E K

parliament 451 5823 7
polblog 1490 16627 2

cora 2708 5278 7
citeseer 3312 4732 6

blogcatalog 5196 171743 7
flickr 7575 239738 9
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– parliament : Parliament network is a social network in french parliament. The
vertexes represent parliament members. They have an edge if they cosigned
a bill together. The dataset is used in [3].

– polblog4 : Polblog network is a social network. The vertexes and the edges
represent blogs about US politics and web links, respectively.

– cora5 : Cora network is a citation network on the cora. The vertexes and the
edges represent the papers and their citations, respectively.

– citeseer6 : Citeseer network is a citation network on the citeseer. The vertexes
and the edges represent the papers and their citations, respectively.

– blogcatalog : Blogcatalog nework is a social network on blogctalog website.
The vertexes and the edges represent the bloggers and their friendship, re-
spectively. The dataset is used in [11].

– flickr : Flickr network is a social network on flickr website. The vertexes and
the edges represent the photographers and their relationship, respectively.
The dataset is used in [11].

3.2 Baseline Methods

To confirm that PPNMF can obtain better community assignment representa-
tion of vertexes, we choose four recent NMF-based methods and five state-of-
the-art network embedding methods as baseline methods.

– SymNMF [13] : SymNMF is a fundamental method for graph clustering.
SymNMF preserves only first-order proximity 7. SymNMF can be seen as a
special case of our method by setting β = 0.5 and λ = 0.

– NSED [27] : NSED is a nonnegative symmetric encoder-decoder model pro-
posed for community detection. NSED preserves only first-order proximity.

– DANMF [32] : DANMF is a deep autoencoder-like NMF model proposed for
community detection. The model adopts the deep learning to NMF. DANMF
preserves only first-order proximity.

– DeepWalk [22] : DeepWalk adopts random walk and skip-gram to learn net-
work embedding. DeepWalk preserves first-order, second-order, and higher-
order proximities.

– node2vec [10] : node2vec is an extension of DeepWalk and it adopts biased
random walk to generate vertex representation vectors. node2vec preserves
first-order, second-order, and higher-order proximities.

– LINE [28] : LINE uses an objective function to preserve first-order proximity
and second-order proximity separately.

– SDNE [29]: SDNE employs deep neural networks to compute vertex em-
beddings. SDNE preserves first-order and second-order proximities and also
balances the error penalty between observed edges and unobserved edges.

4 http://www-personal.umich.edu/mejn/netdata/
5 https://linqs.soe.ucsc.edu/data
6 https://linqs.soe.ucsc.edu/data
7 According to SymNMF paper [13], SymNMF can use either the first-order proximity

or the second-order proximity. We use the former one in this paper.
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– MNMF [30] : MNMF designs its objective function to detect communities
and generate vertex embeddings simultaneously. MNMF balances the effects
of first-order and second-order proximities and modularity measure.

As for microbenchmark of PPNMF, we use PPNMF(β = 0.5), SymNMF,
and PPNMF(W). PPNMF(β = 0.5) indicates a special case of PPNMF, which
is equivalent to a case without using the loss weight matrix B. We also use
SymNMF, which is more special case of PPNMF(β = 0.5) without using the
second-order proximity. PPNMF(W) is a variation of PPNMF by exchanging
A and W in the loss function, that is, PPNMF(W) treats the second-order
proximity as the primary target, while using the first-order proximity as the
secondary. PPNMF(W) is used to verify the appropriateness of the design of
PPNMF.

Table 3: Performance evaluation based on ARI (bold numbers represent the best re-
sults. SymNMF, node2vec, and DeepWalk are abbreviated as SNMF, n2v, and DW,
respectively.)

methods PPNMF DANMF NSED SNMF DW n2v LINE SDNE MNMF

parliament 0.942 0.612 0.572 0.584 0.629 0.769 0.374 0.378 0.002
polblog 0.621 0.602 0.274 0.584 0.470 0.476 0.016 0.012 0.001

cora 0.366 0.280 0.176 0.243 0.270 0.394 0.056 0.044 0.008
citeseer 0.197 0.100 0.029 0.084 0.121 0.183 0.011 0.006 0.003

blogcatalog 0.160 0.142 0.071 0.132 0.102 0.130 0.149 0.035 0.002
flickr 0.152 0.054 0.031 0.101 0.101 0.111 0.103 0.012 0.000

Table 4: Performance evaluation based on NMI (bold numbers represent the best re-
sults. SymNMF, node2vec, and DeepWalk are abbreviated as SNMF, n2v, and DW,
respectively.)

methods PPNMF DANMF NSED SNMF DW n2v LINE SDNE MNMF

parliament 0.900 0.694 0.594 0.685 0.755 0.845 0.519 0.570 0.027
polblog 0.522 0.510 0.233 0.483 0.449 0.453 0.018 0.067 0.005

cora 0.446 0.371 0.325 0.345 0.376 0.463 0.090 0.093 0.015
citeseer 0.236 0.170 0.132 0.187 0.119 0.236 0.018 0.022 0.007

blogcatalog 0.237 0.232 0.111 0.220 0.193 0.222 0.230 0.120 0.005
flickr 0.222 0.111 0.048 0.171 0.163 0.172 0.168 0.028 0.003

3.3 Community detection

We evaluate the performance for community detection based on typical metrics,
ARI, NMI, and Purity. On these metrics, larger value indicates better perfor-
mance taking from 0 to 1. A detailed information is described in [5]. For the
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Table 5: Performance evaluation based on Purity (bold numbers represent the best
results. SymNMF, node2vec, and DeepWalk are abbreviated as SNMF, n2v, and DW,
respectively.)

methods PPNMF DANMF NSED SNMF DW n2v LINE SDNE MNMF

parliament 0.967 0.849 0.749 0.886 0.923 0.966 0.779 0.786 0.406
polblog 0.894 0.884 0.762 0.863 0.843 0.845 0.564 0.557 0.508

cora 0.633 0.578 0.483 0.562 0.559 0.643 0.379 0.375 0.302
citeseer 0.501 0.374 0.335 0.405 0.400 0.498 0.261 0.256 0.213

blogcatalog 0.427 0.394 0.326 0.380 0.380 0.392 0.399 0.297 0.199
flickr 0.400 0.252 0.208 0.343 0.323 0.342 0.348 0.161 0.130

NMF-based methods, we set the number of community K as the number of
ground-truth communities. For the network embedding methods, we set the size
of distributed representation of vertexes to be 64, and then apply the standard
k-means algorithm to identify communities as described in [32]. We set the num-
ber of iteration in PPNMF to be 500. All experiments are conducted on a server
with Tesla T4 GPU and 13GB RAM running Ubuntu 18.04. The parameters of
all methods are searched to achieve the highest score of the metrics. The search
space of each method is decided based on the description in its original paper.
The parameters of PPNMF, β and λ, are tuned in the range of {0.6, 0.7, 0.8,
0.9, 0.99} and {0.0001, 0.001, 0.01, 0.1, 0.5}, respectively.

Table 3, 4, and 5 show the community detection performances based on ARI,
NMI, and Purity, respectively. The results are the average of 10 runs. On these
tables, bold numbers represent the best results. We describe analysis on the
tables as follows.

As you can see, our method PPNMF outperforms all the baseline methods
except for cora dataset. For example, on ARI, NMI, and Purity results on flickr
dataset, our method PPNMF achieves 4.1%, 5.0%, and 5.2% improvement com-
pared to the second best method, respectively. Observe that SDNE results show
relatively low in performance. SDNE is similar to PPNMF in that it balances the
error penalty between observed edges and unobserved edges and it also preserves
the first-order and second-order proximities. However, since SDNE is based on
indirect approach, the relatively low results indicate that our assumption is cor-
rect: direct approach is superior to indirect approach in general. In addition,
the relatively low performance of SDNE and LINE is explained by the fact that
they are designed to capture the microscopic structure of networks, which is not
suitable for community detection. DeepWalk and node2vec preserve not only the
first-order and second-order proximities but also higher-order proximity. Accord-
ingly, they can capture mesoscopic structure to an extent. However, they cannot
capture large community structure in flickr. MNNF is an interesting method that
adopts modularity measure to its loss function in addition to the first-order and
second-order proximities. However, the matrix for representing modularity clus-
tering is very sparse, each vertex belongs to a single community, so the quality
of communities is very low.
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3.4 Microbenchmark

Table 6, 7 and 8 show the results of microbenchmark. PPNMF outperforms
PPNMF(β = 0.5) on all datasets. This indicates that PPNMF generates better
community assignment representation of vertexes by controlling the importance
of observed edges over unobserved edges. In addition, PPNMF(β = 0.5) out-
performs SymNMF on all datasets. This demonstrates that the second-order
proximity is essential for community detection. Finally, PPNMF outperforms
PPNMF(W) on all datasets. This result supports our assumption: since the
first-order proximity is more fundamental information than the second-order
proximity, we should use the first-order proximity as the primary target of the
loss function.

Table 6: Performance evaluation based on
ARI with microbenchmark (bold numbers
represent the best results)

method PPNMF PPNMF(β = 0.5) PPNMF(W) SymNMF

parliament 0.942 0.993 0.632 0.584
polblog 0.621 0.600 0.604 0.584

cora 0.366 0.267 0.216 0.243
citeseer 0.197 0.147 0.087 0.084

blogcatalog 0.160 0.148 0.133 0.132
flickr 0.152 0.146 0.098 0.101

Table 7: Performance evaluation based on
NMI with microbenchmark (bold numbers
represent the best results)

method PPNMF PPNMF(β = 0.5) PPNMF(W) SymNMF

parliament 0.900 0.890 0.715 0.685
polblog 0.522 0.494 0.502 0.483

cora 0.446 0.378 0.288 0.345
citeseer 0.236 0.223 0.134 0.187

blogcatalog 0.237 0.223 0.211 0.220
flickr 0.222 0.21 8 0.138 0.171

Table 8: Performance evaluation based on Purity with microbenchmark (bold numbers
represent the best results)

method PPNMF PPNMF(β = 0.5) PPNMF(W) SymNMF

parliament 0.967 0.962 0.887 0.886
polblog 0.894 0.888 0.884 0.863

cora 0.633 0.578 0.535 0.562
citeseer 0.501 0.449 0.360 0.405

blogcatalog 0.427 0.401 0.417 0.380
flickr 0.400 0.389 0.319 0.343

Table 9: Overall training time

Dataset training time (sec)

parliament 0.36
polblog 4.44

cora 13.93
citeseer 19.67

blogcatalog 29.60
flickr 68.79

Table 10: Best β and Density (in descending
order of Density)

Dataset best β Density (%)

parliament 0.60 2.86
polblog 0.70 0.80

blogcatalog 0.90 0.64
flickr 0.80 0.41
cora 0.99 0.07

citeseer 0.99 0.04
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We show the runtime for overall training in Table 9. Despite of the large
number of 500 iterations, on the largest dataset flickr, PPNMF completes the
training in about 70 second.

3.5 Parameter analysis

We investigate the parameter sensitivity of PPNMF. PPNMF has two param-
eters β and λ. β controls the loss weight between observed edges and unob-
served edges. λ balances the loss weight between the first-order proximity and
the second-order proximity. We describe the analysis of each parameters as fol-
lows.
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Loss weight controlling parameter β We show that best β and the density
on each dataset in Table 10. The best β denotes β value that achieves the highest
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score in the metrics on each dataset. The density denotes 100E
N2 for each dataset.

The table shows that the value of the best β is inversely correlated with the
density of network. Actually, the best β of the densest network parliament is
0.6. On the other hand, the best β of the sparsest network citeseer is 0.99. It
is our future work we automatically choose the best β depending on dataset by
taking its sparsity into account.

Next, we introduce reconstruction error analysis. We show how largely the
parameter β affects the reconstruction error on cora and citeseer in Figure 1.
The loss1 represents the sum of reconstruction error between non-zero elements
in adjacency matrix A and the elements of the expected adjacency matrix for
non-zero elements in A. The loss0 is defined similarly. The sum of loss1 and loss0
equals the overall reconstruction error. As β becomes larger, loss0 increases.

Balancing parameter between first-order and second-order proximity
λ We show how largely the parameter λ affects the performance on cora network
in Figure 2. As λ becomes larger, PPNMF concentrates more on the second-order
proximity. When β = 0.99 (the best β for cora), we can see that the performance
of λ = 0.1 is better than that of λ = 0.0001. It demonstrates that both the first-
order and second-order proximities are essential for community detection.

4 Related Work

As we explained in Section 1, there are many recent work for community detec-
tion and network embedding methods.

4.1 Community detection

Real networks consist of multiple groups with dense connectivity. Group is often
called community. Any two vertexes in the same community tend to have high
similarity mutually. The purpose of community detection task is to reveal a com-
munity structure underlying in a given network. The task has been very popular
and many researchers have put a lot of effort into it [18, 6, 9, 27, 32]. Traditional
community detection methods, such as modularity-based methods [18, 6] and
min-cut-based methods [7, 26], are characterized by the property of networks.
The modularity-based methods are the most widely used. The methods detect
communities through modularity optimization such as, by spectral optimization
[19]. Traditional methods, including modularity-based methods, usually assign
each vertex only to a single community.

4.2 Network embedding

Network embedding and representation learning methods generate low dimen-
sional representation of vertexes. Principal component analysis (PCA) [12], Lo-
cally Linear Embedding [24] and Laplacian Eigenmaps [2] are classical network
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embedding methods. Recently, various network embedding or representation
learning methods have been proposed [22, 28–30]. Although network embedding
methods can obtain distributed representations of vertexes, they can not effec-
tively capture community structure in two reasons. First, since they are based on
indirect approaches, they tend to produce suboptimal results: they need to apply
traditional clustering methods (such as k-means) to the distributed representa-
tions. k-means does not work well in such usage, because community structure
can be nonlinear and k-means is not suitable for high dimension of distributed
representations, which is known as ”the curse of dimensionality” phenomena.
Second, the representation is generated to capture the microscopic structure of
network. This is not suitable for obtaining community structure, which requires
to capture the mesoscopic structure of network.

SDNE [29] is similar to our method in that 1) it controls the error penalty
between observed edges and unobserved edges, and 2) it preserves first-order
and second-order proximities by using regularized autoencoder. However, since
it is based on indirect approach, the quality of the community detection results
is suboptimal (See Section 3).

DeepWalk [22] and node2vec [10] preserve higher order proximity by using
random walks. node2vec employs biased random walks that can explore neigh-
borhoods in breadth-first search (BFS) as well as in depth-first search (DFS).
LINE [28] uses two functions that preserve the first-order proximity and second-
order proximity independently. MNMF [30] incorporates modularity into net-
work embedding to preserve community structures. Qiu et al. [23] prove that
network embedding methods such as DeepWalk and LINE closely relate to ma-
trix factorization.

4.3 NMF based method

NMF [15] factorizes a data matrix into two low-dimensional matrixes. Because
of its high interpretability, NMF is widely used in many applications [4, 27, 32].
Especially, NMF is applied to community detection [13, 14, 27, 32]. SymNMF [13,
14] is an extension of NMF for graph clustering. SymNMF is related to spectral
clustering [20], and takes a nonnegative similarity matrix as an input. NSED [27]
is a nonnegative symmetric encoder-decorder approach. NSED uses NMF both
in its encoder and decoder components. DANMF [32] is a deep autoencoder-
like NMF model. DANMF learns hierarchical mappings between the original
network and the final community assignment based on a deep autoencoder-like
architecture. All the above NMF-base methods can directly obtain a community
assignment representation of vertexes. However, these methods preserve either
of first-order proximity or second-order proximity and do not balance the error
penalty between observed edges and unobserved edges. In this paper, we aim
to directly generate a community assignment representation that preserves first-
order and second-order proximities and that is controlled by balancing the error
penalty between observed edges and unobserved edge.
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5 Conclusion

In this paper, we proposed a novel NMF-based model, namely PPNMF, to tackle
the problem of community detection. Our model achieves a better, distributed,
nonnegative and sparse representation of vertexes with the combination the first
order and second order proximities. The extensive experimental results on com-
munity detection task demonstrate that PPNMF is superior to existing methods.
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