
An approach for generating random temporal
semantic graphs with embedded patterns

Aurélie Leborgne, Jorick Nuss, Florence Le Ber, and Stella Marc-Zwecker

Université de Strasbourg, CNRS, ENGEES, ICube UMR 7537,
F-67000 Strasbourg, France

{aurelie.leborgne,stella}@unistra.fr, florence.leber@engees.unistra.fr

Abstract. Nowadays, many information can be represented by graphs
with both semantic and temporal relationships. In this article, we for-
malize these graphs as temporal semantic graphs, called TS-graphs. Our
goal is to randomly generate such graphs in order to use them as a test
base to compare and assess graph mining algorithms. Our method makes
it possible to generate random graphs by mastering the incrustation of
predefined patterns. Indeed, our proposition is to build random graphs
from randomly modified predefined patterns, random vertices and ran-
dom edges. Finally, we provide a measure for assessing how the patterns
are embedded in the rest of the graph, that could show how it will be
difficult to extract them by usual graph pattern mining methods.

Keywords: Random graph generation, temporal and semantic graphs,
simulation, graph patterns

1 Introduction

Today, many information can be represented by graphs, e.g. active connexions
within neurons in a brain [26], pathways for animals [25], sampling sites on river
networks [20], or the evolution of agrosystems [14]; these graphs often represent
dynamic phenomena, and thus combine both semantic and temporal aspects. We
call them temporal semantic graphs (TS-graphs) in the following. An example
of such a graph is the model of spatio-temporal graph defined by Del Mondo
et al. [11]. The size of graphs based on real data can be important, e.g. about
100 images of brain activity for an observation in functional magnetic resonance
imaging, and thus need to be summarized to facilitate the analysis. A way to
perform such a summary is to apply graph mining methods, and especially graph
frequent pattern mining. Besides, to test and improve such methods, large sets
of graphs are necessary. In order to complete existing repositories of labelised
graphs based on real data (real graphs in the following), synthetic graphs can be
used, but they need to have characteristics close to these real graphs. Further-
more, to represent the variety of real graphs, synthetic graphs should be random,
with respect to some given constraints.

Besides, random generation of graphs is essential to design and test methods
of graph frequent pattern mining [4]. Indeed, it is quite relevant to have a tool

to generate an infinity of graphs extremely varied in terms of size, structure and
complexity, and especially fully configurable. We do not know in advance the
difficulty of designing temporal semantic graphs mining methods, that can be
applied in several domains; it is therefore interesting to prepare powerful tools
to provide these tasks.

We are thus interested in the generation of random TS-graphs. Our major aim
is to produce graphs with inexact recurring patterns ”embedded” in a uniform
stochastic generation of vertices and edges. The recurring patterns are produced
by applying random transformations on a set of temporal semantic sub-graphs
that we will call ”source patterns”. Thus we obtain a number of ”transformed
patterns”, similar to the source patterns, that will be randomly inserted in the
graph. Figure 1 illustrates these various points. Finally, the proposed method
would be able to produce completely synthetic TS-graphs approaching graphs
of real data in various application domains.

Fig. 1. Illustration of the generation method of random TS-graphs and its vocabu-
lary: source-patterns (left) are randomly transformed (center) and then embedded in
a temporal semantic graph (right)

The remainder of this paper is organized as follows. Section 2 is an overview
on graph generation approaches while Section 3 describes the model of graphs
we deal with. The generation method of random graphs is provided in detail in
Section 4. Then, a measure for assessing pattern insertion into these generated
graphs is presented in Section 5. Finally, Section 6 presents the conclusion of
this paper with directions for future works.

2 Related Work

Generation of graphs allows to build test batteries at the level of performance, to
evaluate effectiveness and efficiency of algorithms [2, 17], to simulate processes
and data [15], to visualize and summarize [18] but also to compute statistics,
etc. Moreover, graphs, and consequently simulated graphs, are widely used in
many domains like environment, health, social networks, biology, web, business
intelligence, etc.

In most cases, the goal is to generate realistic graphs. To do that, many mod-
els are proposed. The oldest classical models [12, 3], used for a long time, allowing
to generate random graphs in a simple manner. The probability to generate an

edge between two vertices is evenly equal to |E|
|V |2 , where |E| is the number of

edges and |V |, the number of vertices. These models generate a random graph
that has a binomial degree distribution. They are adapted to certain situations,
but cannot reflect the various properties of a real-world complex network, for
example the Internet, the World Wide Web, social networks.

To generate this kind of complex graphs, adapted for natural or human sys-
tems, Barabási-Albert model [6, 5] is one of the most referred models. It consists
in an algorithm, which uses a preferred attachment mechanism. In these graphs,
some nodes have an unusually high degree compared to other nodes of the net-
work, due to power-law degree distribution. Hadian et al. [13] worked on the
acceleration of this model. Another well-known model for this kind of graphs is
the Chung-Lu model [1], in which the probability of an edge is proportional to
the product of the degrees of its two vertices. The problem of this model is that
it requires a set of parameters, making it more difficult to use.

Another way to obtain synthetic graphs close to the reality is to use Kronecker
graph models [18, 19]. Indeed, using the Kronecker’s product, that is a non-
standard matrix operation, allows to respect some properties of real graphs, e.g.
heavy tails for the in- and out-degree distribution, heavy tails for the eigenvalues
and eigenvectors, or small diameters.

To generate synthetic graphs, recursive models are also popular. The Recur-
sive MATrix method (R-MAT) [7] is a simple and fast algorithm. It recursively
selects a quadrant on adjacency matrix to generate an edge in dynamic man-
ner, then the same procedure is repeated until obtaining the desired number of
edges. Besides, Park and Kim [21] worked to get a fast and scalable generator
(TrillionG) to generate trillion-scale synthetic graphs. To do that, authors based
their recursive vector model on the generalization of Chakrabarti et al.’s model
[7] and Leskovec et al.’s model [18, 19]. The RDyn approach was recently de-
signed [24] for generating temporal graphs representing the dynamics of network
communities. This method can fit our problem in some cases, since the dynamics
of such communities involve splits and merges, as in the application domains we
focus on.

In a more general context Kuramochi and Karypis [17] proposed an algorithm
to generate random general graphs including known patterns to create synthetic
datasets. This work was carried out with the aim of serving as a test base for

frequent graph pattern mining methods. Indeed, as patterns have been voluntar-
ily included in the random graph, it is possible to test these methods, knowing
the expected result. To do this, authors generally rely on a Poisson distribution.
This is what we propose to do for the generation of temporal semantic graphs.

3 The model of TS-graphs

In the following, we introduce a general model for TS-graphs. We consider a set
of temporal entities and their relations. Two types of relations are considered,
general semantic relations (e.g. spatial, correlation, etc.) and filiation relations.
Filiation relations are necessary to follow entities during time. The model is re-
stricted such that a relation links two entities at the same time instance or at two
consecutive time instances. Furthermore, there is at most one semantic relation
and one filiation relation between two entities. The model can nevertheless be
generalized for accepting several, but a limited number of semantic relations.

Based on the proposition of [10], TS-graphs are formalized as follows. We
introduce a time domain, T = {t1, t2, ...tn}, where ti represents a time instance
of a given granularity and ti < ti+1 for all i ∈ [1, n]. ∆ is a set of entities,
{e1, e2, ...em}. We also introduce Σ, a set of semantic relations, and Φ, a set of
filiation relations.

A temporal semantic graph G is a tuple (V,EΣ , EΦ), where V is a set of ver-
tices (el, ti) ∈ ∆×T , EΣ is a set of tuples ((ei, ti)T (ej , tj)) where (ei, ti), (ej , tj) ∈
V , ti ≤ tj ≤ ti+1, and T ∈ Σ, and EΦ is a set of tuples ((ei, ti)ρ(ej , ti+1)) where
(ei, ti), (ej , ti+1) ∈ V , and ρ ∈ Φ.

This model can be seen as the union of three subgraphs in which entities
are grouped according to time instances. For example, Fig.2(a) represents the
evolution of spatial regions at three time instances: T = {t2000, t2005, t2010},
∆ = {P1, P2, P3, P4, P5} (P stands for plot). This evolution is represented within
a semantic temporal graph G1 (Fig.2(b)), where semantic relations come from
the Region Connection Calculus (RCC8) theory [23], to modelize topological
inclusion and connection between spatial regions.

– The subgraph of semantic relations represents the semantic interactions
between entities at a given time ti. In Fig. 2(a), these relations (represented
by green lines) are illustrated by the RCC8 relationship. For example, the
nodes (P2, t2005) and (P3, t2005) of G1 are connected by an edge labelled with
EC (Externally Connected).

– The subgraph of temporal semantic relations represents the semantic
interactions between entities at two successive time instances. In the example
of Fig. 2(a), these temporal semantic relations (red lines) are illustrated
by the RCC8 relationship. For example, in G1, the nodes (P1, t2000) and
(P2, t2005) are connected by an edge TPPi (Tangential Proper Part inverse),
while (P3, t2005) and (P3, t2010) are connected by an edge EQ (EQual).

– The subgraph of filiation relations represents the transmission of identity be-
tween entities at different times (blue lines); following [11], two types of filiation

relations are considered, continuation and derivation, respectively denoted γ and
δ in Fig. 2(a). A continuation relation between (ei, ti) and (ej , ti+1) means that
ei and ej have the same identity; a derivation relation means that ej contains
a part of ei identity (here a part of its area). For example, the nodes (P4, t2005)
and (P5, t2010) are connected by an edge labelled with δ(derivation).

(a) Data on spatial regions over time

(b) The corresponding TS-graph G1

Fig. 2. A small example of TS-graph with spatial relations and entities

4 An algorithm for generating TS-graphs

Our aim is to build temporal synthetic graphs, that include some regularities or
frequent patterns (i.e. TS-subgraphs that appear with a frequency higher than
a user-specified or auto-determined threshold), like graphs based on real data.
To do that, we randomly generate the nodes and edges of a graph G based on
Poisson distributions, and we rely on a set of source patterns, that are randomly
modified and embedded in G (see Fig. 1). These modified patterns are themselves
temporal semantic graphs. Besides, given a global number of nodes in G, these
nodes are progressively and randomly allocated into the successive time instances

of T , until no enough nodes are available. Our proposition relies on the approach
described by [17]. The main difference is that we use different types of relations.

The generation of the random TS-graph G including transformed patterns,
must be done in several steps in order to separate the pattern insertion process
from the generation process of the rest of the graph. We therefore propose a
method organised into three major steps, that are repeated for each time instance
t of the graph:

– Step 1: Selection of a source pattern, that is transformed, and inserted in
G starting from the current time instance (i.e. the first time instance of the
pattern is t).

– Step 2: Random generation of nodes (ej , t) associated to the current time
instance, j ∈ [1,m].

– Step 3: Random generation of the edges and their relation label, between
pairs of nodes ((ej , t), (ek, t)) for semantic relations, and pairs ((ej , t), (el, t−
1)) for temporal semantic and filiation relations, j, k, l ∈ [1,m].

We have chosen to put pattern insertion as step 1 because of algorithmic
purposes. Indeed, by doing this way, we can adjust the number of random nodes
generated in step 2 to respect as much as possible the given Poisson distribution.
Conversely, when the graph construction stops, with the last time instance being
t, there can be nodes (from a previously inserted pattern) in a time instance
greater than t: these nodes have to be deleted.

Algorithm 1 is the main algorithm for the generation of random TS-graphs
with embedded patterns. The input parameters, some regarding the patterns,
some the general TS-graph, are described in Table 1.

Parameter Description

λn Mean of the zero-truncated Poisson distribution of the total number
of nodes in the graph

λr Mean of the zero-truncated Poisson distribution of the number of
nodes per time instance

Λe Table of three cases grouping means of the Poisson distribution of the
number of each type of relations per node

labelsn List of available labels for nodes

labelse Table of three lists of labels available for each type of edge

Kp Pattern insertion probability: Probability that a source pattern is
selected for insertion at a time instance

λt Mean of the Poisson distribution of the number of transformations to
be performed on a selected source pattern

Poolp Set of source patterns
Table 1. Parameters of Algorithm 1

To determine the total number of nodes in the graph as well as the number
of nodes for each time instance, the algorithm calls for two random distributions
by a zero-truncated Poisson law [8] of respective means λn and λr.

Algorithm 1: random generation of TS-graph

Data: λn, λr, Λe, labelsn, labelse,Kp, λt, Poolp
Result: random TS-graph

1 G=new graph
2 time = 1
3 // G nbNodes is the number of nodes to generate in G

4 G nbNodes=random from ZT-Poisson(λn)
5 while G nbNodes > 0 do
6 // t nbNodes is the number of nodes to generate at current time

7 t nbNodes=random from ZT-Poisson(λr)
8 /* *STEP 1: pattern selection, transformation and insertion */

9 if toss biased coin with Kp probability == True then
10 select a source pattern from Poolp
11 nbTrans=random from Poisson(λt)
12 randomly transform selected pattern with nbTrans transformations
13 temp=number of nodes in the transformed pattern
14 if G nbNodes >= temp then
15 G nbNodes = G nbNodes− temp
16 insert randomly transformed pattern from time instance

17 end

18 end
19 /* *STEP 2: random generation of nodes at time instance */

20 t nbNodes = t nbNodes − number of patterns nodes (e, t) with t = time
21 i=1
22 if G nbNodes < t nbNodes then
23 Delete nodes (e, t) where t ≥ time
24 else
25 while (i ≤ t nbNodes) do
26 chosenLabel=random pick from list labelsn
27 newNode=new node with chosenLabel as label, time as time
28 add newNode to graph G
29 G nbNodes=G nbNodes-1
30 i = i+ 1

31 end
32 /* *STEP 3: random generation of relations at time instance

*/

33 foreach node in G at time do
34 // number of relations starting from current node

35 nbSemanticRel=random from Poisson(Λe[0])
36 nbTempSemanticRel=random from Poisson(Λe[1])
37 nbF iliationRel=random from Poisson(Λe[2])
38 genRelation(G,time,node,labelse[0],nbSemanticRel,semantic)
39 if time > 1 then
40 genRelation(G,time,node,labelse[1],nbTempSemanticRel,temporal semantic)
41 genRelation(G,time,node,labelse[2],nbF iliationRel,filiation)

42 end

43 end
44 time = time+ 1

45 end

46 end
47 return G

The choice of a Poisson law rather than a normal distribution is justified
by the need for discrete values for the number of nodes. Moreover, the zero-
truncated Poisson law is limited to 1 and, as the classical Poisson law, it is
particularly accurate for small means. These characteristics are suitable for our
problem, because we seek to achieve the most natural random distribution pos-
sible, and especially to avoid extreme values. Besides, it is important to specify
that the number of time instances is not directly configurable, since it is de-
cided according to the distribution of the two laws of zero-truncated Poisson
mentioned above.

Furthermore, note that source patterns of Poolp, can be either randomly gen-
erated beforehand by using Algorithm 1 without lines 8 to 18, as the generation
of a source pattern can be treated as the generation of a subgraph, or provided
by a third party.

Step 1 (from lines 8 to 18 of Algorithm 1). The first step is to choose
randomly, according to parameter Kp ∈ [0; 1], uniformly, if a pattern must be
inserted or not. Then a source pattern is selected in the pool of source patterns
Poolp. A number of transformations (nbTrans) are then applied to this pattern.
This last number is obtained by applying a Poisson distribution with mean λt.
This number must be small with respect to the size of the source pattern to
insure that more or less the same pattern is inserted. It should be noted that if,
by chance, the final graph contains similar patterns that were not intentionally
incorporated, it does not matter because our final aim is to check the frequency
of patterns deriving from each source pattern. The possible transformations are
the following:

(i) Change of a node/relation label (cf. Fig. 3(b)).
(ii) Add/Remove of a node/relation (cf. Fig. 3(c)).
(iii) Repetition of a subpattern (cf. Fig. 3(d)).
(iv) Add/Remove the nodes (and their edges) associated to an intermediate time

instance (cf. Fig. 3(e)).

The source pattern transformation algorithm is not presented in this paper. It
ensures that, for each transformation, the constraints of TS-graph definition are
respected (see Sect. 3). Before embedding the transformed pattern, the algorithm
checks whether it is not too large, i.e. if its number of nodes temp is lesser than
the number of nodes to be inserted in the graph (G nbNodes). In this case, the
pattern is inserted into the graph and G nbNodes is updated by substracting
the pattern number of nodes. The pattern insertion is such that its lower time
instance equals time (lines 13-17 of Algorithm 1).

Step 2 (from line 19 to 31 of Algorithm 1). This step consists in gener-
ating the number of missing nodes to reach the number of nodes (t nbNodes)
computed for the time instance time by the zero-truncated Poisson law.

Inserted patterns (Step 1 of Algorithm 1) usually contain several time in-
stances. Therefore, before adding nodes with a given time instance, it is neces-
sary to take into account the nodes belonging to patterns inserted before (line

(a) Original source pattern (b) Change of a node label

(c) Add a node/relation (d) Repetition of a subpattern

(e) Add of an intermediate time instance

Fig. 3. Example of possible transformations of a source pattern. Changes are high-
lighted by a slightly colored rectangle in pink

20 of Algorithm 1). Then, the algorithm checks whether the total number of re-
maining nodes to be inserted (G nbNodes) is greater than the number of nodes
to be inserted within the current time instance time (t nbNodes). If not, all
existing nodes with a time instance equal or greater than time are to be deleted
(they correspond to previously inserted patterns, that may exceed the current
time instance) (line 23 of Algorithm 1). These node deletions take place only
at the end of the graph construction, to prevent last time steps having a low
number of nodes.

Moreover, a label is randomly assigned to each generated node.

Step 3 (from line 32 to 43 of Algorithm 1). This third and last step allows
to generate and label the relations between the nodes generated for the current
and the previous time instances. In the context of TS-graphs, semantic relations
connect two nodes with the same time instance t, while semantic temporal and
filiation relations connect two nodes with successive time instances t− 1 and t.

The method must respect the uniqueness of each relation type between two
nodes. So, we get, at most, a full mesh for each type of relation. Just like the
generation of the nodes (see Step 2), the generation of the relations is config-
urable, by setting the means of three Poisson (random) distributions. Unlike the

generation of nodes, in this case, we accept that the Poisson law produces the
number 0. That being said, depending on the wanted type of graph, at this step,
it is possible to use other laws, for example, power law [6] in order to create
TS-graphs composed of scale-free graphs.

The pseudo-code of this step is presented in Algorithm 2 and input param-
eters in Table 2. This algorithm generates the set of relations of a given type
for a node. It adds, at most, a given number of relations. Indeed, if the node
is already connected to all the other nodes of the current time instance time
(for semantic relations) or of the time instance time− 1 (for temporal semantic
or filiation relations), the algorithm stops the generation of the corresponding
relation for this node (line 15 of Algorithm 2). Moreover, if the node belongs to
an inserted pattern and has already a certain number of relations, the algorithm
subtracts this number from the number of relations to generate (nbOfRel) (line
2 of Algorithm 2).

At the end of this step, the patterns previously added (see Step 1) are con-
nected to the nodes generated for time = t instance. This construction is correct
since two nodes of the same time instance are connected with at most one seman-
tic relation (lines 4-5 of Algorithm 2) and two nodes of successive time instances
are connected with at most one temporal semantic and one filiation relations
(lines 6-7 of Algorithm 2).

Parameter Description

G Graph in which, relations must be added

n Node from which, relationships must be generated

labelse Table of three lists of labels available for each type of relationship

nbRel Maximum number of relations having type relType to add to node n

relType Type of relations that will be generated (semantic,
temporal semantic, filiation)

Table 2. Input parameters of Algorithm 2.

In the worst case, the complexity of the main algorithm would be O(n2), n
being the number of nodes. But since edges exist only between nodes within the
same or two following time instances, the complexity is O(n2/T), T being the
number of time instances.

Besides, there could be some inconsistencies within the graph, due to the
domain semantic. For instance, let consider three nodes (P1; t1), (P2; t1) (P3; t1)
and their relations (P1; t1) TPP (P2; t1), (P2; t1) TPP (P3; t1), and (P3; t1) TPP
(P1; t1): this subgraph is inconsistent wrt the RCC8 framework (TPP, is a tan-
gential proper part, is a transitive and not reflexive relation). Consistency in
this framework can be checked with available tools, e.g. [9], based on constraint
satisfaction problem approaches.

Algorithm 2: generation of a given type of relation for a node

Data: G,n, labelse, nbRel, relType, time
1 // In case node is from inserted pattern

2 nbRel = nbRel − number of relType relations already starting from node n;
3 for i=0 to nbRel do
4 if relType == semantic then
5 nodeList=pick all the nodes from the same time instance not already

connected to n;
6 else
7 nodeList=pick all the nodes from the previous time instance not

already connected to n;
8 end
9 if size of nodeList > 0 then

10 chosenLabel=random pick from list labelse
11 chosenNode=random pick from list nodeList
12 newRel=new relation of type relType between chosenNode and n

with chosenLabel as label
13 add newRel to graph G;

14 else
15 break;
16 end

17 end

5 Insertion Quality Score

In this section, we introduce the Insertion Quality Score (IQS) that evaluates
how patterns are embedded within the generated graphs.

Our aim is to generate random TS-graphs controlled by a certain number
of parameters, which can be extracted from graphs based on real data. Indeed,
the objective is to provide data sets for data mining methods applying to these
types of graphs, and particularly for the search of frequent patterns. In order to
test these methods efficiently, it is necessary to produce graphs at different levels
of complexity. The complexity can be assessed by a combination of different pa-
rameters affecting the inserted patterns, regarding the number of nodes and the
number of the different types of edges, with respect to the same characteristics
in the general graph.

We first introduce some measures used to determine the Insertion Quality
Score. To do this, we first define some notations. Let G1 be a TS-graph, with V
the set of nodes and E = EΣ ∪ EΦ the set of edges. Let VP ⊂ V be the set of
all nodes belonging to an inserted pattern. θ = |T | is the total number of times
intances in G1 and θP is the number of all time instances associated with nodes
of VP . The corresponding set is defined as follows TP = {t ∈ T |∃(ei, t) ∈ VP }.
Following this idea, we define VTP

= {(ei, tj) ∈ V |tj ∈ TP } i.e. the set of all
nodes associated to time instances of TP .

Then ε = |E| is the total number of edges, ν = |V | the total number of nodes
in G1; νP = |VP | is the number of all the nodes belonging to an inserted pattern;

νTP
= |VTP

| is the number of nodes associated to time instances of TP ; εP is
the number of edges linking nodes of VP . We denote εP̄ = ε− εP , νP̄ = ν − νP ,
θP̄ = θ−θP , νTP̄

= ν−νTP
. Furthermore, the subset of temporal semantic (resp.

semantic, filiation) edges is noted Ets (resp. Es,Ef = EΦ), and its cardinality
εts (resp. εs, εf).

Four measures can then be defined, for taking into account the 3 types of
edges and for the nodes.

– Mes ∈ [0; 1] (Formula 1 with i = s) allows to measure the proportionality
value between the average number of semantic edges belonging to an in-
serted pattern and the average number of semantic edges not belonging to
an inserted pattern.

– Mets ∈ [0; 1] (Formula 1 with i = ts) is like Mes but for temporal semantic
edges.

– Mef ∈ [0; 1] (Formula 1 with i = f) is like Mes but for filiation edges.

Mei =
min(

εiP
νP
,
εi
P̄

νP̄
)

max(
εiP
νP
,
εi
P̄

νP̄
)

with i ∈ {s, ts, f} (1)

In practice, the more Mei with i ∈ {s, ts, f} is close to 1, the more the
average number of a type of edges in patterns is close to the average number
of the same type of edges in the rest of the graph. This means that patterns
are well embedded, regarding this type of edges.

– Mn ∈ [0; 1] (Formula 2) represents the proportionality value between the
average number of nodes for the time instances of TP (t1 and t2 in Fig. 4)
and the average number of nodes for the time instances of TP̄ (t3 and t4 in
Fig. 4).

Mn =
min(

νTP

θP
,
νTP̄

θP̄
)

max(
νTP

θP
,
νTP̄

θP̄
)

(2)

In practice, the more Mn is close to 1, the less nodes coming from inserted
patterns do modify the average number of nodes per time instance in the
graph. In other words, if Mn is close to 1, this amounts that patterns are
well embedded in the graph, regarding the temporal distribution of nodes.
For example, in Fig. 4,

νTP

θP
= 4+4

2 = 4 and
νTP̄

θP̄
= 3+5

2 = 4, and thus

Mn = 1.

Finally the Insertion Quality Score of a graph is defined as a linear combi-
nation of the previous measures, to give a global glance of the pattern insertion
quality in this graph G.

IQS(G) = aMes + bMets + cMef + dMn

with a+ b+ c+ d = 1
(3)

The interpretation of Formula 3 is as follows:

Fig. 4. Example of an inserted pattern for Mn metric

– If IQS(G) → 0, then, on average, the inserted patterns are much different
from the average of the rest of the graph, from a structural and semantical
point of view (nodes and type of edges). We can say that the patterns are
badly inserted and thus easily identifiable.

– If IQS(G) → 1, then the inserted patterns are, on average, close to the
average of the rest of the graph. The patterns are perfectly inserted, so the
difficulty in locating patterns is consequent.

It is important to note that the IQS indicates an average score. For example,
trying to insert patterns from a great variety of source patterns will result in
a loss of accuracy of the IQS. In this case it would be interesting to compute
an IQS for the subset of inserted patterns associated to each source pattern
in order to have an idea of their insertion quality. Indeed, our final goal being
to test methods of frequent pattern mining, what interests us in priority is to
measure the difficulty in finding patterns. However, other metrics can be used,
especially when the aim is to generate graphs close to real graphs (e.g. temporal
node centrality [16]).

6 Conclusion and future works

We have defined a model for temporal semantic graphs (TS-graph), which allows
to represent the temporal evolution of entities linked by semantical relations.
Moreover, the lack of this type of data in the literature has led us to propose
an algorithm for the generation of random TS-graphs. Given temporal semantic
patterns are randomly modified and inserted into a graph which nodes and edges
are randomly generated.

The generation of TS-graphs is fully configurable, allowing them to be close
to data-based graphs by using different laws adapted to the reality. Moreover, we
have proposed a measure, namely the Insertion Quality Score (IQS), to evaluate
the quality of patterns insertion. In order to refine this evaluation, the IQS could
be extended to take into account more information on nodes or relation labels.

The presented algorithms have been implemented in Python 3.6. Our aim
is to generate graphs with large time sequences and / or with large spatial
extensions. Experiments are currently conducted to study the effects of input
parameters on the performances of our algorithms and the characteristics of
resulting graphs.

In the future, we will focus on particular applications (e.g. modeling the activ-
ity of brain regions or the evolution of land-use in agricultural landscapes). A ma-
jor issue will be to verify the graph consistency, which is application-dependent.
Furthermore, it would be interesting to extend this work by preserving local
structures found in real graphs, as proposed in [22], in order to make the gener-
ated graphs closer to these real graphs. Our approach for the generation of ran-
dom graphs will finally be used to evaluate methods of frequent spatio-temporal
patterns mining by comparing the patterns found by the different methods with
respect to those inserted in the graph.

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In:
Proc. of the 32th ACM symposium on Theory of computing, STOC’00. pp. 171–
180 (2000)

2. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Physical
Review E 71(3), 036113 (2005)

3. Bollobás, B.: Random graphs. No. 73 in Cambridge Studies in advanced mathe-
matics (2001)

4. Bonifati, A., Holubová, I., Prat-Pérez, A., Sakr, S.: Graph generators: State
of the art and open challenges. ACM Comput. Surv. 53(2) (Apr 2020).
https://doi.org/10.1145/3379445

5. Campbell, C., Shea, K., Albert, R.: Comment on “control profiles of complex net-
works”. Science 346(6209), 561–561 (2014)

6. Ferrer i Cancho, R., Solé, R.V.: Optimization in complex networks. In: Statistical
mechanics of complex networks, pp. 114–126 (2003)

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model for graph
mining. In: Proceedings of the 2004 SIAM Int Conference on Data Mining. pp.
442–446 (2004)

8. Cohen, A.C.: Estimating the parameter in a conditional poisson distribution. Bio-
metrics 16(2), 203–211 (1960)

9. Condotta, J.F., Ligozat, G., Saade, M.: A Generic Toolkit for n-ary Qualitative
Temporal and Spatial Calculi. In: The 13th Int Symposium on Temporal Repre-
sentation and Reasoning (TIME’06). pp. 78–86. Budapest, Hungary (2006)

10. Del Mondo, G., Rodŕıguez, M., Claramunt, C., Bravo, L., Thibaud, R.: Modeling
consistency of spatio-temporal graphs. Data & Knowledge Engineering 84, 59 – 80
(2013)

11. Del Mondo, G., Stell, J.G., Claramunt, C., Thibaud, R.: A graph model for spatio-
temporal evolution. Journal of Universal Computer Science 16, 1452–1477 (2010)

12. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)
13. Hadian, A., Nobari, S., Minaei-Bidgoli, B., Qu, Q.: Roll: Fast in-memory genera-

tion of gigantic scale-free networks. In: Proceedings of the 2016 Int Conference on
Management of Data. pp. 1829–1842 (2016)

14. Jahel, C., Baron, C., Vall, E., Karambiri, M., Castets, M., Coulibaly, K., Bégué,
A., Seen, D.L.: Spatial modelling of agro-ecosystem dynamics across scales: A case
in the cotton region of West-Burkina Faso. Agricultural Systems 157, 303 – 315
(2017)

15. Kaiser, M., Martin, R., Andras, P., Young, M.P.: Simulation of robustness against
lesions of cortical networks. European Journal of Neuroscience 25(10), 3185–3192
(2007)

16. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev.
E 85, 026107 (Feb 2012). https://doi.org/10.1103/PhysRevE.85.026107

17. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings 2001
IEEE Int Conference on Data Mining. pp. 313–320 (2001)

18. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: An approach to modeling networks. Journal of Machine Learning
Research 11(Feb), 985–1042 (2010)

19. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.: Realistic, mathemati-
cally tractable graph generation and evolution, using kronecker multiplication. In:
European conference on principles of data mining and knowledge discovery. pp.
133–145. Springer (2005)

20. Nica, C., Braud, A., Le Ber, F.: Exploring Heterogeneous Sequential Data on River
Networks with Relational Concept Analysis. In: 23rd International Conference on
Conceptual Structures, Edimbourg, United Kingdom. LNAI, vol. 10872, pp. 152–
166. Springer (2018)

21. Park, H., Kim, M.S.: Trilliong: A trillion-scale synthetic graph generator using
a recursive vector model. In: Proceedings of the 2017 ACM Int Conference on
Management of Data. pp. 913–928 (2017)

22. Purohit, S., Holder, L.B., Chin, G.: Temporal graph generation based on a distribu-
tion of temporal motifs. In: 14th International Workshop on Mining and Learning
with Graphs (MLG’18) (2018)

23. Randell, D.A., Cui, Z., Cohn, A.G.: A Spatial Logic based on Regions and Connec-
tion. In: Proceedings 3rd Int Conference on Knowedge Representation and Rea-
soning (1992)

24. Rossetti, G.: RDYN: graph benchmark handling community dynamics. Journal of
Complex Networks 5(6), 893–912 (2017)

25. Wittemyer, G., Keating, L.M., Vollrath, F., Douglas-Hamilton, I.: Graph theory
illustrates spatial and temporal features that structure elephant rest locations and
reflect risk perception. Ecography 40(5), 598–605 (2017)

26. Yuan, J., Li, X., Zhang, J., Luo, L., Dong, Q., Lv, J., Zhao, Y., Jiang, X., Zhang, S.,
Zhang, W., Liu, T.: Spatio-temporal modeling of connectome-scale brain network
interactions via time-evolving graphs. Neuroimage 180, 350–369 (2018)

