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Abstract. Graph Neural Networks (GNNs) have been widely used in
graph representation learning. However, existing popular methods can
not model the relationship between central node with its different hops
or types of neighbors. To address this weakness, we propose a new model,
Hop-Hop Relation-aware Graph Neural Network (HHR-GNN), that in-
troduces knowledge graph embedding method: neural tensor network
(NTN) to learn the relation-scores between central node and its differ-
ent hops of representation, which can provide a useful and personalized
context for each node in the aggregation process. This mechanism is
suitable for both homogeneous and heterogeneous graphs representation
learning. Experimental results on five benchmarks show the competitive
performance of our model compared to state-of-the-art GNNs, with up
to 13K faster in terms of time consuming per training epoch on large
heterogeneous graphs.
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1 Introduction

Graph Neural Networks (GNNs) were introduced in [11] and [22] as a generaliza-
tion of recursive neural networks. In recent years, Graph Convolution Network
[15] was proposed and it simplifies graph convolutions [21, 25, 6, 7, 25] by passing
messages between direct (one-hop) neighbors, which is analogous to the receptive
field of a convolutional kernel in Convolutional Neural Networks (CNNs). GNNs
have been widely used in graph representation learning and achieved impressive
performance in various application areas, such as academic citation networks
[15, 28], social networks [12], knowledge graphs [23] and recommender systems
[3, 34].

However, limiting each layer’s messages to only one-hop neighbors seems
arbitrary [1, 2], and there have been some efforts of using extended neighborhoods
for aggregation in GNNs. GraphSAGE [12], Mix-Hop [1] and Lanczosnet [17]
exploit multi-scale information based on the fixed-length random walk or powers
of an adjacency matrix, which improve performance by utilizing the higher-order
neighborhood information. Different hops of neighbors show different importance
in central node’s representation learning, but these methods do not consider the
relationship between central node and its different-hops neighbors.
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This property is even more important for heterogeneous graphs that have
more complex connectivity (multiple types of nodes and edges). Different types
of neighbors have significant impact on central node’s representation learning.
For example, a Paper’s research area (class) is more determined by its Author
(A type node) than Conference (C type node) generally. The majority of current
GNNs assume graphs as HOmogeneous graphs (GNN-HO), and there are some
attempts to apply GNNs to heterogeneous graphs (GNN-HE) [23, 30]. Relational
Graph Convolutional Network (R-GCN) [23] applies a relation-specific transfor-
mation for directly linked neighbors. Another type of methods, e.g., Heteroge-
neous Graph Attention Network (HAN) [30] and Graph Transformer Networks
(GTN) [24], are mainly based on manually designed or automatically learned
meta-path, which transforms a heterogeneous graph into a homogeneous graph,
then GNNs can be applied on the transformed graph [24, 30, 10] to learn the node
embedding, after which the central node directly concatenates different types of
neighbor’s embeddings from one-hop or meta-path (higher-order). However, the
manually defined or learned meta-path is a general rule that is not suitable for
all nodes. In other words, the relationship between each central node and differ-
ent types (or different hops) of neighbors from the meta-path are not considered
in aggregation process, the similar problem as in GNN-HO.

Exploring the relationship between central node and its different hops and
types of neighbors in aggregation is important for several reasons: (1) it can learn
a personalized context for each node in aggregation; (2) it can greatly improve
the efficiency by learning a local (within a certain-hops neighborhood) useful
and personalized context, instead of manipulating the whole adjacency matrix
to learn a general (global) meta-path in heterogeneous graphs as in GTN; (3)
it provides insights on the effective hops or types of neighbors for prediction,
which improves a model’s transparency and interpretability. Currently, there
are no methods to explore this.

Motivated by this, we borrow the concept from Knowledge Graph Embed-
ding(KGE): relation-score, that captures interaction between head entity and tail
entity in knowledge graph (KG) [29] and propose a universal solution applica-
ble to both homogeneous and heterogeneous graphs’ representation learning. We
adopt different weight matrices for different hops or types of neighbors to get the
central node and its p-hop representation. Instead of directly concatenating these
embeddings, we learn the relation-scores of central node with its different-hops
embeddings, which allows the central node to focus on the important hops of
neighbors in the multi-scale neighborhood. To this end, we feed these embeddings
to a neural tensor network (NTN) [26], a powerful method to model relational
information, that can simultaneously learn different types of relationship (e.g.,
r01, r02, ..., r0p represent different relation-scores between central node’s embed-
ding and its one-hop, two-hop, ..., p-hop representation, respectively.) Finally,
we concatenate central node’s embedding and its different-hops embeddings with
multiplying their corresponding relation-scores to get the central node’s new em-
bedding. In this way, the new node embedding captures both different hops of
neighbors information and the relationships between central node and neighbors.
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In summary, the key contributions of this paper are:

1. We propose Hop-Hop Relation-aware Graph Neural Network (HHR-GNN),
a new class of GNNs for computing node embeddings that incorporate the
relationship between a central node and its different hops or types neighbors.
With the relation-score, HHR-GNN can learn to mix latent information from
neighbors at various distances and types.

2. Our model can identify a useful and personalized meta-path for each node.
Analyzing the learned relation-score benefits the interpretability and be able
to provide insights on which hops or types of neighbors are more effective
for predictions.

3. We prove the effectiveness of our model on both commonly used homoge-
neous and heterogeneous graphs for node classification tasks. Experimental
results show the competitive performance of our model compared to state-of-
the-art GNNs, with up to 13K faster in terms of time consuming per training
epoch on large heterogeneous graphs.

2 Related Works

Our model draws inspiration from the field of GNN-HO, GNN-HE and KGE. In
what follows, we provide a brief overview on related works in all fields.

Graph Neural Networks (GNNs) were introduced in [11] and [22] as a gener-
alization of recursive neural networks that can directly deal with a more general
class of graphs, e.g. cyclic, directed and undirected graphs. Most existing GNNs
follow a neighborhood aggregation or “message passing” scheme. Graph convo-
lutional network (GCN) is derived from spectral graph convolutions [21, 25, 6,
7] and simplifies the K-localized Chebynet [8, 5] by only aggregating first-order
neighbors. Graph Attention Networks (GAT) [28] learns to assign different edge
weights at each layer based on node features. However, they only pass messages
between neighboring (one-hop) nodes in each layer, which seems arbitrary [16].
Some works generalize GCN to incorporate higher-order neighbors. GraphSAGE
[12] aggregates the neighbors sampled from a fixed-length random work. Mix-
Hop and Lanczosnet [18] explore multi-scale information based on powers of ad-
jacency matrix, essentially. Graph diffusion convolution (GDC) [16] transforms
the original adjacency matrix via graph diffusion to indirecly leverage high-order
neighborhood information. These models improve the performance by utilizing
the higher-order neighborhood information.

For heterogeneous graph, RGCN [23] and HetGNN [35] use either distinct
linear projection weight or type-specific RNN to encode features for each type
of adjacent neighbors, without considering the high-order neighbors. Another
type of algorithms transform a heterogeneous graph into a homogeneous graph
constructed by manually meta-paths in Heterogeneous Graph Attention Net-
work (HAN) [30] or learning a soft selection of edge types for generating useful
meta-paths in Graph Transformer Networks (GTN) [24]. HAN discards all in-
termediate nodes along the meta-path by only considering two end nodes, which
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results in information loss. GTN learns the meta-paths by many times of the mul-
tiplications of softly selected adjacency matrices, which is very time consuming,
especially for large scale graphs. Instead of manipulating the whole adjacency
matrix to learn the meta-path, our model utilizes the nodes’ low dimensional
hidden representations and knowledge graph embedding method to learn the
relation-score for different types of nodes within a certain hop, which can effec-
tively learn a personalized context for each node with multiple types of neighbors
in an end-to-end fashion.

Knowledge Graph Embedding (KGE) is used to learn a scoring function of
head and tail entities which evaluates an arbitrary triplet and outputs a scalar to
measure the acceptability of this triplet. Based on the scoring function, KGE can
be roughly categorize into two groups: translational distance models (distance-
based scoring functions)and semantic matching model (similarity-based scoring
function). Some widely used approaches, such as TransE [4], TransH [31], TransR
[18] and TransD [13] belong to the first group, while RESCAL [19], DistMult [32]
and NTN (used in our paper) [26] are the semantic matching models. Exploring
different KGE models is an important direction for future work.

3 Methodology

3.1 Preliminaries

A graph with N nodes can be represented as G= (V, E ,X), where node vi ∈ V,
edges (vi, vj) ∈ E (i, j = 1, ..., N), and a feature matrix X ∈ RN×D containing
N D-dimensional feature vectors. A hidden representation of node vi learned by

the k-th layer of a GNN model is denoted by H
(k)
i and we initialize H(0) = X.

Definition 1. Heterogeneous graph [33]. Heterogeneous graph is a graph with
multiple types of nodes and links, each node is associated with a node type, and
each link is associated with a link type. It is worth noting that the type of a link
Eij automatically defines the types of nodes vi and vj on its two ends.

Heterogeneous graph is associated with a node type mapping function fv: V
→ Tv and a link type mapping function fe: E → Te, where |Tv| + |Te| > 1. If
both Tv =1 and Te =1, it is a homogeneous graph with the same type of nodes
and edges. The heterogeneous graph can be represented by a set of adjacency
matrices {Ar}Rr=1 (R=|Te|), and Ar ∈ RN×N is an adjacency matrix where
Ar[i, j] is non-zero when there is a r-th type edge from vj to vi. The adjacency
matrix is simplified to A ∈ RN×N in homogeneous graph.

In heterogeneous graph, two nodes can be connected via different semantic
paths, which are called meta-paths.

Definition 2. Meta-path [27]. A meta-path is a path defined on the network

schema in a form of v1
r1−→ v2

r2−→ ...
rp−→ vp+1, where v and m are node types

and link types, respectively.
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Fig. 1: HHR-GNN architecture. HHR-GNN first calculates its different hops of
representation, e.g., H(1)p is p-hop representation that aggregates p-hops of
neighbors information. Then the central node’s representation and its differ-
ent hops representation will be feed to a NTN model to learn the relation scores.
Sp ∈ RN×1 is central node with its p-hops representation’s relation-scores for all
nodes in a graph. Finally, we concatenate each node’s embedding with its differ-
ent hops of representation with multiplying its corresponding relation-score to
get the new embedding.

Definition 2 defines a composite relation R = m1◦m2...◦mp between node v1
and vp+1. Given the composite relation R, the adjacency matrix of the meta-path
can be obtained by multiplications of adjacency matrices as:

AR = Ar1Ar2 ...Arp . (1)

For example, the meta-path Author-Paper-Conference (APC) in citation graphs,

which can be represented as A
AP−→ P

PC−→ C, generates an adjacency matrix
AAPC by the multiplication of AAP and APC . In homogeneous graph, Ar1 =
Ar2 ... = Arp , AR means the adjacency matrix A multiplied by itself p times
(Ap).

3.2 Proposed Approach

In this section, we first describe the framework of our model that generalizes the
concepts of GNNs with two key insights, as shown in Figure 1. First, when com-
puting node embedding, instead of only aggregating messages computed from a
node’s immediate neighbors, we allow our model to aggregate message from p-
hop neighborhood (p > 1) and use different projection matrices for different hops
of neighborhood. For heterogeneous graph, HHR-GNN does not need predefined
meta-paths and can learn a useful personalized context from p-hop 1 neighbor-
hood. Secondly, before aggregating different types or hops of embedding, we
learn their relation-scores in the KGE module, then concatenate different hops
or types of embeddings with multiplying the corresponding relation-score. This

1 We encourage all types of nodes to appear in the p-hop neighborhood
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Fig. 2: Visualization of the Neural Tensor Network. Each dashed box represents one
slice of the tensor layer, in this case 2 slices. Given Node 0 and its one-hop, two-hop
representations learned from GNN modules, NTN utilizes two slices of tensors to model
the two types of relationships: central with one-hop representation and central with
two-hop representation.

allows the central node to distinguish embeddings from different types or hops
in the graph.

p-hop Representation Learning. Before aggregating neighborhood informa-
tion, we should notice that different hops or types neighbors have different traits
and their embeddings should fall in different feature space. Therefore, we design
a hop-specific transformation matrix (Wp) to project the node features for each
hop (or type) of nodes. The p-hop representation can be expressed as:

H(k)p = σ(ApH(k)Wp), (2)

where σ can be any activation function, Wp ∈ Rdk×dk−1 is the trainable transfor-
mation matrix, H(k) ∈ RN×dk is the hidden representation of the k-th layer and
Ap is the p-th power of adjacency matrix A. H(k)p is the p-hop representation.
Note that H(k)0 = H(k).

As for heterogeneous graph, p-hop representation can also be interpreted as
a certain type of neighbors’ representation. Because Ap can be seen as the p-th
step in the meta-path, as defined in Def 2, which also automatically defines the
node type (or edge type), as we defined in Def 1. For example, the adjacency
matrix AAPC ( AAP × APC) can be seen as two-hop (for A type nodes) or
AC-type connectivity matrix. So, Eq. 2 is a general expression and can be used
in both homogeneous and heterogeneous graphs to represent a certain hop or
type of representation. Note, if there are different types of nodes in the same
hop in heterogeneous graph, we use different transformation matrices to learn
the embeddings. For example, there are two types of nodes in the same hop, and
we will use Wp1 and Wp2 to mapping the two types of neighbors.
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Relation-score Learning. Before we combine different information, a key issue
is that our model should allow the central node to distinguish different hops or
types of neighborhood information.

The relationship between central node’s embedding and p-hop embedding
can be seen as the relationship between head entity and tail entity in knowledge
graph (KG). Knowledge Graph Embedding (KGE) methods aim to assign a score
of how likely it is that two entities are in a certain relationship [26]. We define
the relation-score as:

Definition 3. Relation-score. Relation-score is to model the relationship be-
tween central node’s embedding and a certain hop or type representation, such

as s0p = fr(H
(k)
i ,H

(k)p
i ) is the relation-score of vi with its p-hop representation.

A natural follow-up question is how to learn the relation-score. We want to
model the relationship between central node with its p types of representations
simultaneously and usually p > 1. So, we introduce an expressive neural tensor
network (NTN) [26] that can relate two input entities vectors across multiple
dimensions and each slice of the tensor is responsible for one type of entity pair,
as shown in Fig. 2. So, after getting the embeddings, we computes the relation-
score by the following NTN-based function:

S = f(H(k)W
[1:p]
R χ), (3)

where f is a nonlinear activation function, S ∈ RN×p is the learned relation-

score for each relation type, W
[1:p]
R ∈ Rdk×dk×p is a tensor and each slice of the

tensor is responsible for instantiation of a relation. p types of representations
H(k)1 ,H(k)2 , ...,H(k)p can be written as a tensor χ ∈ RN×dk×p and Eq. 3 allows
to learn multiple types of relationship simultaneously.

Aggregation. After learning the relation-score, we multiply different hops of
representation with their corresponding relation-score, then concatenate them
with central node’s embedding to get the new embedding H(k+1), as shown:

H(k+1) =‖pi=0 σ(SiH
(k)i), (4)

where ‖ denotes column-wise concatenation, Si is the relation-score with its i-th
type of representation for all nodes in a graph, H(k)i , S0 = 1, and H(k)0 = H(k)

After applying components introduced in the previous section, we obtain the
final node representation, which can be used in different downstream tasks. For
multi-class node classification, H(k) will be passed to a fully-connected layer with
a softmax activation function. The loss function is defined as the cross-entropy
error over all labeled examples:

L = −
∑
l∈Vl

F∑
f=1

Ylf ln H
(K)
lf , (5)
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Algorithm 1 The overeall process of HHR-GNN

Input: G= (V, E ,X) with N nodes;
A set of adjacency matrices {Am}Mm=1;
Feature matrix X ∈ RN×D;
Labeled nodes Vl;
Label indicator matrix Ylf ∈ R|Vl|×F ;
The number of hops: p;
The number of layers K.
Output: The final embedding h

(K)
i , and p-hop relation scores si ∈ R1×p.

Calculate different powers of adjacency matrix A1,A1,...,Ap. In homogeneous graph,
Ap means p-hop connectivity matrix. In heterogeneous graph, Ap means a specific
relational connectivity matrix, as shown in Eq. 1.
for k = 1,2,...,K do

for each vi ∈ Vl do
Calculate different powers adjacency matrix

Calculate its p-hop representation h
(k)0
i , h

(k)1
i ,..., h

(k)p
i

Calculate the relation-scores: si1, si2,..., sip
Concatenate the central node and its p-hop neighbors embeddings with multi-
plying the corresponding relation-scores:

h
(k+1)
i =‖pm=0 σ(simh

(k)m
i )

end for
end for
Calculate Cross-Entropy L = −

∑
l∈Vl

∑F
f=1 Ylf lnh

(K)
lf .

Back propagation and update parameters in HHR-GNN.
Return: h

(K)
i and si.

where Vl is the set of node indices that have labels and dK is the dimension
of output features equaling to the number of classes. Ylf ∈ R|Vl|×F is a label
indicator matrix. With the guide of labeled data, we can optimize the our model
via back propagation and learn the embeddings of nodes and relation-score. The
overall process of HHR-GNN in shown in Algorithm 1.

Computational Complexity. Two key parts are p-hop representation (Eq. 2)
learning and relation-score learning (Eq. 3). Each type or hop of neighbors share
the same weight and the relation-score function is also shared by all nodes in a
graph. So, the computation can be parallelized across all nodes. The computa-
tional complexity of Eq. 2 and 3 is O(p × N × dk × dk−1 + p × N × dk × dk).
As for memory requirement, it grows linearly in the size of the dataset and we
perform mini-batch training to deal with this issue.

4 Experiments

We conduct semi-supervised node classification experiments on both homoge-
neous and heterogeneous graphs.
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Table 1: Overview of the datasets.
Dataset Nodes Edges Features Classes Train/Val./Test Edge type

Cora 2,708 5,429 1,433 7 140/500/1,000 1
Citeseer 3,327 4,732 3,703 6 120/500/1,000 1

DBLP 18,405 67,946 334 3 800/400/2857 4 (PA, AP, PC, CP)
ACM 8,994 25,922 1,902 3 600/300/2125 4 (PA, AP, PS, SP)

IMDB 12,772 37,288 1,256 3 300/300/2339 4 (MA, AM, MD, DM)

4.1 Datasets.

We use two widely used citation homogeneous graphs: Cora and Citeseer, and
three heterogeneous graphs: DBLP, ACM, and IMDB. Following [15, 24], we split
the Train/Validation/Test as for the two types of graphs as shown in Table 1.

– Cora. The Cora dataset contains 2,708 documents (nodes) classified into
7 classes (i.e., Neural Networks, Rule Learning Probabilistic Methods, ...,
Reinforcement Learning) and 5,429 citation links (edges). We treat the cita-
tion links as (undirected) edges and construct a binary, symmetric adjacency
matrix. Each document has a 1,433 dimensional sparse bag-of-word feature
vector and a class label.

– Citeseer. The Citeseer dataset contains 3,327 documents classified into 6
classes (i.e., Agents, AI, ..., ML) and 4,732 links. Each document has a 3,703
dimensional sparse bag-of-word feature vector and a class label.

– DBLP. DBLP is a computer science bibliography website and contains three
types of nodes (papers (P), authors (A), conferences (C)), four types of
edges (PA, AP, PC, CP). The authors are divided into four research areas
(Database, Data Mining, Artificial Intelligence, and Information Retrieval).
Each author is described by a bag-of-words representation of their paper
keywords.

– ACM. ACM is a citation network and contains three types of nodes (pa-
pers(P), authors (A), subject (S)), four types of edges (PA, AP, PS, SP).
The papers are divided into three classes (Database, Wireless Communica-
tion, Data Mining). Paper features correspond to elements of a bag-of-words
represented of keywords.

– IMDB is an online database about movies and television and we use a sub-
set of IMDB extracted by [30]. It contains three types of nodes (movies (M),
actors (A), and directors (D)), and four types of edges (MA, AM, MD, DM).
The movies are divided into three classes (Action, Comedy, Drama) accord-
ing to their genre. Movie features are given as bag-of-words representations
of plots.

4.2 Baselines and Experimental Setup.

For homogeneous graph, we choose four mostly related method, GCN [15],
GAT [28], GraphSAGE [12]and MixHop [1]. GCN and GAT only aggregate the
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first-order neighbors, and GAT enables specifying different weights to differ-
ent nodes in a neighborhood (GCN can not). GraphSAGE aggregates informa-
tion from a different number of hops, or search depth, away from a given node
(sampled by random walk). MixHop can also leverage feature representations of
neighbors from a various distances using different powers of adjacency matrix.

In our model, we model the central node with its tow-hop representation
for Cora and Citeseer. Throughout experiments, we use the Adam optimizer
[14] with learning rate 0.008, and set the regularization parameter to 5 ×10−4,
the dropout is 0.6. We train all models for a maximum of 500 epochs and use
early stopping with a patience of 20, i.e. we stop training if the validation loss
does not decrease for 20 consecutive epochs. We use two HHR layer for Cora,
and the dimension for each layer are 32 and 8, with two NTN (32× 32 × 2,
8 ×8 ×2) to learn the relationship between central and one-hop, central and
two-hop respectively. For Citeseer, we use one HHR layer and set the embedding
dimension to 32. We use the same architecture as in the original papers for GCN,
GAT, GraphSAGE and MixHop, because these algorithms (GAT,GraphSAGE
and MixHop) have many hyperparameters and the codes are downloaded from
the accompany websites. We report the mean accuracy of 15 runs with random
weight matrix initialization.

For heterogeneous graph, we compare with conventional network embed-
ding methods: DeepWalk [20], metapaht2Vec [9], and GNN-based methods: GCN
[15], GAT [28], HAN [30] and GTN [24], following [24]. DeepWalk, CN and GAT
is originally designed for homogeneous graphs and we ignore the nodes(edges)
types and perform these methods on the whole graph.

Considering the three graphs have three types of nodes, and two-hop neigh-
borhood already contains all types of nodes in the three graphs. So, we model
central node with its one-hop neighbors and two-hop neighbors relationship: AP,
AC(A-P-C), AA(A-P-A); PA, PS, PP (P-A-P, P-S-P)) and MA, MD, MM (M-A-
M, M-D-M) for the three datasets DBLP, ACM and IMDB respectively, based
on the tasks. It should be emphasized that in heterogeneous graph, a certain
hop neighbors can come from different types of nodes, we use different weight
matrices to learn embeddings for different types of nodes in the same hop. For
example, P has two types of neighbors in one-hop neighborhood: A and S in
ACM dataset and we use two weight matrices to learn the two types of node’s
embeddings. We use the following sets of hyperparameters DBLP, ACM and
IMDB: 0.5 (dropout rate), 5 ×10−4 (weight decay), two HHR layer with the
hidden dimension 32. The learning rate are 0.004 (DBLP and ACM) and 0.006
(IMDB).

4.3 Experimental Results.

Node Classification Results. Based on results in Table 2 and Table 3, we
conclude that our method is very competitive on both homogeneous and hetero-
geneous graphs.
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Table 2: Node classification results for homogeneous graph. (%)
Methods Cora Citeseer

GCN 81.5 ± 0.42 70.3 ± 0.46
GAT 83.0 ± 0.70 72.5 ± 0.67
GraphSAGE 82.2 ± 2.70 71.4 ± 1.70
MixHop 81.9± 0.62 71.4 ± 0.81

Ours 83.84 ± 0.77 72.74 ± 0.60

Table 3: Node classification results for heterogeneous graph. (F1 score)
Methods DBLP ACM IMDB

DeepWalk 63.18 67.42 32.08
metapath2vec 85.53 87.61 35.21
GCN 87.30 91.60 56.89
GAT 58.14 92.33 58.14
HAN 92.83 90.96 52.33
GTN 94.18 92.68 60.92

Ours 94.65 ± 0.26 91.83± 0.54 61.67 ± 0.62

For homogeneous graph, our method leverages an enlarged (two-hop) neigh-
borhood, which can provide more information for central node’s representation
learning. This is especially benefit for sparse graphs. 2

For heterogeneous graph, our method is about 1.5% better than GTN and
9.3% better than HAN on IMDB dataset. We reason this improvement is caused
by that our model can provide a personalized and relation-aware context for each
node, and utilize different types of neighbors to learn the new representation
for central node. HAN utilizes the manually designed meta-path to generate the
homogeneous graph and other types nodes information has been lost, which may
damage the central node’s representation learning and make the performance
unstable. The key idea of GTN is to learn a general meta-path, while this path
is not suitable for every node in the graph. We encourage all types of nodes
to appear within a fixed-hop neighborhood, meanwhile treat different types of
nodes differently in the aggregation. Compared with HAN and GTN, our method
can provide a personalized and relation-aware context for each node.

Efficiency. In Fig. 3a and Fig. 3b, we plot the performance of the state-of-the-
arts GNN-HE over their training time relative to that of our model on IMDB,
and DBLP datasets. The figures shows our model gets competitive performance
in both accuracy and efficiently.

Fig. 3a and Fig. 3b show that GCN is the most efficient, but can not ensure
the accuracy. Simply aggregating the neighbors is not suitable for heterogeneous
graph that contains more complex neighborhood information than homogeneous
graph. Compared with other methods, GTN has an obvious advantage in accu-
racy, while does not perform good in efficiency. Because GTN aims to learn an

2 The average node degree for Cora and Citeseer are 4.9 and 3.7 respectively.



12 L. Zhang et al.

GCN
0.41×

Ours
1×

GAT
12k ×

GTN
13k ×HAN

1.5k ×
Te

st
 a

cc
ur

ac
y 

(%
)

Relative Training Time (per epoch)

(a) DBLP

GCN
0.33×

Ours
1×

GAT
286×

GTN
2517×

HAN
38×

Te
st

 a
cc

ur
ac

y 
(%

)

Relative Training Time (per epoch)

(b) IMDB

Fig. 3: Performance over training time on DBLP and IMDB. Ours is the highest
while achieving competitive efficiency.

Node ID

0%
25%
50%
75%

100%

0 2 4 6 8 10 12 14 16 18 20

0-2 relation score 0-1 relation score

(a) Cora.

Movie ID

0%

25%

50%

75%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M-A M-D M-M

(b) IMDB.

Fig. 4: Cora 0 − 1 relation-score and 0 − 2 relation-score. IMDB MA, MD and
MM relation-score.

optimal meta-path by utilizing convolution to softly select adjacency matrices,
which makes the final adjacency matrices are dense and the later adjacency
matrices multiplication is very time consuming, especially for large graphs. For
DBLP and IMDB, GTN stakes three graph transformer layers to produce the
meta-paths, which needs the multiplication of the softly selected adjacency ma-
trix: 18405×18405×18405 and 12772×12772×12772 for DBLP and IMDB re-
spectively. That is why GTN spends more time than other methods. While our
method learns the meta-path by utilizing the low-dimension hidden represen-
tations and a light-weight NTN model, which is very efficiency, especially for
heterogeneous graphs with a few types of relations. For DBLP and IMDB, we
consider three types of relations and the meta-path (relation-scores) is learned
by the NTN model whose architectures are both 32×32×3. For heterogeneous
graphs with more types of nodes and relations, our model need more mapping
matrix and more slices of NTN layers, and this will slow the computation, which
we will future explore in the future works.

Interpretability. A key part in our algorithm is to treat different hops or types
of neighbors differently by the learned relation-score.
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We first visualize the one-hop (0-1 relation-score ) and two-hop (0-1 relation-
score ) of the first 20 nodes on Cora, as shown in Fig. 4a. For a better compari-
son, we use the 100% stacked column chart and more proportions means higher
relation-score in each bar. Fig. 4a shows that 0-1 relation-score is generally higher
than 0-2 relation-score, which verifies that directly linked (first-order) neighbors
have higher relation score than indirectly connected (second-order) neighbors.

Besides, we also show the learned relation-score of IMDB that contains four
types of edges (MA, AM, MD, DM). We model the relationships of MA, MD
(two types of one-hop neighbors) and MM (two-hop neighbors that formed by
M-A-M and M-D-M) and visualize the three types of relation-scores in Fig 4b.
Compared with Fig 4a, the relation-score is much more complexed, due to the
central node is connected by different types of nodes. Fig 4b shows that each
node has their preference for the different types of nodes, e.g., Node11 (Movie)
has a much closed relationship with Director (the red part takes a big proportion
in the bar), while Node20 has a more closed relationship with Actor.

5 Conclusion

We proposed Hop-Hop Relation-aware Graph Neural Networks, a new class of
Graph Neural Networks for computing node representations that incorporates
different hops and types of nodes, meanwhile their relationships with central
node by the introduced NTN. We show that HHR-GNN is competitive no matter
in accuracy and efficiency. Besides, it can identify the useful and personalized
context or meta-path for each node, which leads to benefits in interpretability
and provides insight on the effective hops or types neighbors for prediction.
In our model, we just use NTN to learn the relation score, and more other KG
embedding methods can be applied, which will have different influence. We leave
this for future work.

References

1. Abu-El-Haija, S., Perozzi, B., Kapoor, A., Harutyunyan, H., Alipourfard, N., Ler-
man, K., Steeg, G.V., Galstyan, A.: Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In: ICML (2019)

2. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: NeurIPS
(2016)

3. van den Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263 (2017)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NeurIPS. pp. 2787–2795 (2013)

5. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017)

6. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: ICLR (2014)



14 L. Zhang et al.
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