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Abstract. Graph neural networks (GNNs) are a successful example of
leveraging the underlying structure between samples to perform efficient
semi-supervised learning. Though the spatial correlation of the nodes is
inherently taken into account by the models’ architecture, structural cor-
relations and their effects in learning remain a relatively overlooked topic.
In this work, we propose a new approach to train a GNN, by separating
the samples based on their structural importance, meaning discriminating
for samples that belong in a higher tier in terms of a network centrality
metric. Our proposed method is supported by recent theoretical findings
based on Extreme Value Theory, that buttress the separation of extreme
and regular samples in binary classification. Essentially we split a GNN
into two parts, each trained and validated separately using extreme and
regular nodes from the observed set. We perform experiments in the
three most prevalent GNN models, using three well-known benchmark
datasets and compare the predictions of the model with and without
sample discrimination. The classification of extreme nodes is clearly ben-
efited, validating the relevant theory. In contrast, the regular nodes are
undermined, despite their significantly larger train set. Exploratory find-
ings suggest the limited structure contained in regular samples to be a
potential reason for this.

1 Introduction

As the success of machine learning skyrocketed the past decade in the academic
community, an increasing number of real-world problems have been undergoing
machine learning-based solutions. One major setback in this natural turn of events
is the limited number of labels accompanying real-world datasets or the total lack
thereof. The arduous procedure required to label a massive dataset motivated a
shift of attention towards effective semi-supervised learning approaches. Moreover,
given the abundance of relational data, from chemical [7] to social networks [20],
and from drug-discovery [3] to fake news detection [15], semi-supervised learning
based on the graph of the input samples has been exceedingly popular [26],
whether the underlying graph is already defined [25], or is implicitly inferred [18].

In this work, we focus on Graph neural networks (GNNs), which have exhibited
impressive results in transductive semi-supervised classification tasks using a
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minuscule supervision [9]. Their impressive accuracy stems from leveraging the
correlation of the input samples in the underlying graph. Numerous neural
architectures have been recently proposed to combine the structure of the graph
and the attributes of the nodes in an effective end-to-end manner [23]. That
being said, the majority of the models focus on strategies of aggregation from
multiple nodes, overlooking the structural role of each specific node and its effect
on the learning task. Although node centrality is taken into account inherently in
message passing, its effect is unclear, since the aggregation step does not preserve
the scale of the representations’ combination [24]. On the one hand, this serves
the learning tasks, which rely on positional information i.e. a paper’s field or a
products’ category are similar to their neighbors. On the other, highly connected
nodes in realistic networks exhibit different characteristics than regular ones,
and may potentially correlate with the function classes. For example, classifying
famous people in twitter based on their features and their followers may entail
a different learning procedure than classifying less famous users, for the most
classification tasks imaginable.

From a theoretical perspective, extreme value theory argues that the distri-
bution of the extreme samples may differ from the bulk of the data and their
dependency structure may be different, therefore extremely rare samples, i.e.
samples located far from the bulk, should undergo learning separated from the
rest. The main assumption being that a real valued random variable X with
distribution F is regularly varying i.e. if there exists ρ > 0 such that ∀x > 1,

1− F (λx)
1− F (x)

x→∞→ λρ

where the event X > x is less likely as x gets large and ρ is known as
the index of regular variation. If instead of the sample’s norm, we consider
the degree as the "measure of rarity", EVT can be applied to samples that
are connected with an underlying graph i.e. input nodes to a graph learning
problem. The heavy-tail assumption of the degree matches the main property
of the scale-free networks, which are ubiquitous for real, human-made graphs
[1,19], including all the GNN node classification benchmarks. Figures (1a, 1b)
and (1c) illustrate the distribution of the degree for the three common graph
benchmark datasets. Each distribution follows a heavy-tail. The vertical axis is
on a log scale so that the nodes with extreme degrees are visible. One can see
that the distributional tail may vary from a figure to another, to this extent
one way to compare the degree distribution of a graph to another would be to
standardize the distribution of degrees. one common standardization being the
Pareto standardization: 1/

(
1−F (x)

)
where F is the distribution of degrees. If one

considers n nodes ui with corresponding degree ei, F can be approximated by its
empirical counterpart F̂ (t) = 1

n

∑n
i=1 1{ei ≤ t}, where 1{E} corresponds to the

indicator function of the event E . Standardization and distributional comparison
of degrees for different graphs will be subject of future work.

Though there are architectures that capitalize on the node’s centrality by
analogous attention weights ([22]), assuming different learning for each possible
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level of degree increases severely the danger of overfitting. Moreover, our approach
is not a new model, but rather a different type of training that can be coupled
with any GNN architecture. To this end, we propose to split a GNN model into
two submodels, each being trained, validated, and tested using respectively the
"extreme" and "regular" nodes of the initial train, validation and test set. The
extreme and regular nodes are defined based on the degree distribution and
a threshold, which is treated as a hyperparameter and is optimized using the
validation set. We demonstrate the effectiveness of this approach using the three
most well-known GNN architectures (GAT,GCN and GraphSAGE), and three
prevalent benchmark datasets (CORA,PubMed,Amason-Photo). For each
model, we use as a baseline the respective GNN model with double the number
of hidden parameters. Some findings of our experiments include:

– A sufficient increase of accuracy for the extreme nodes, throughout most of
the models and datasets.

– An exploration of the relationship between the number of samples and the
samples’ edges, that potentially explains why datasets with few extreme
samples but rich structure achieve better results then ones with more extreme
samples but lower degree.

The code to reproduce our analysis can be found online 3.

2 Background and Related work

2.1 Extreme Value Theory

Extreme value theory is the branch of statistics which focuses on the deviations
from the median (or any other centrality measure) of probability distributions.
Models based on extremes tend to learn the unusual rather than the usual. The
field of application of these models range from risk management like finance,
insurance, telecommunication or environmental science to teletraffic data and
large graph analysis. EVT provides insights on rare events.

In the univariate setting, the empirical quantity corresponding to (1− p)th
quantile of F , the distribution of a random variable X, for a given probability
p of exceedance, is x̂p,n = inf{x ∈ R, 1

n

∑n
i=1 1{Xi ≥ x} ≤ p} for large up to

moderate values of p. Nonetheless, as p gets small the finite dataset Dn = {Xi}ni=1

is not guaranteed to provide valid and non degenerate solution x̂p,n, unless one
relies on EVT to estimate large quantiles of a distribution. In this way, EVT
boils down to studying the distribution of maxima as a Generalized Extreme
Value (GEV) distribution, that is to say an element of the Gumbel, Fréchet
or Weibull parametric families. The main assumption is the existence of two
sequences {an, n ≥ 1} with an > 0, {bn, n ≥ 1} and a non-degenerate cumulative
distribution function G such that

lim
n→∞

nP
(
X − bn
an

≥ x
)

= − logG(x) (1)

3 https://github.com/GiorgosPanagopoulos/Extreme-GNNs
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where x is any continuity point of the domain of G.
In the case where assumption (1) is fulfilled, F is said to be in the domain of

attraction of G. The tail behavior of F boils down to the distribution of G. Up to
rescalling, G(x) = exp

(
− (1 + γx)−

1
γ
)
where 1 + γx > 0, γ ∈ R. By convention,

(1 + γx)−
1
γx = exp(−x) for γ = 0. The shape of the tail is controled by the sign

of γ.
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Fig. 1: Degree distribution in the examined datasets.

2.2 Graph Neural Networks

Graph Neural Networks (GNN) are a neural architecture that utilizes the under-
lying relations between the input samples of the data, which form a graph, to per-
form semi-supervised learning with minuscule training labels. Let G = (V, E) be a
graph with a set of nodes V with |V| = n ≥ 2 and edges E with |E| = m ≤ n(n−1)
describing the set of edges. An edge between node u and v are depicted as eu,v.
Our setting is binary node classification, in which a label Yu ∈ {−1, 1} is associ-
ated to each node u, who is associated with a feature vector Xu ∈ R1×d where d
is the number of features of each node, forming a feature matrix X ∈ Rn×d and a
label vector Y ∈ Rn×1. The graph can be described in the form of its adjacency
matrix A ∈ Rn×n and normalized adjacency Â = D−1/2(A− In)D−1/2 where In
is the identity matrix and D is the degree matrix of the graph [4]. Overall, a GNN
architecture consists of an initial aggregation step, where the features of a node’s
neighbors are aggregated and combined with a weighted non-linear formula. In
one of the earliest GNNs, Graph Convolutional Network [12], the aggregation
was performed using the adjacency of the graph H1 = ReLU(ÂXW0)). Here
W0 ∈ Rfxd is a matrix of learnable parameters. This combination is one hidden
layer of the neural network. H1 ∈ Rn×d can then be passed into another hidden
layer ÂH1W1, combining information from two-hop neighbors of the node using
a new set of parameters W1. Once the layers have achieved the desired depth,
the representation of the final hidden layer can be inserted into an output layer
such as a softmax function to derive a node’s probability to belong in a certain
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category. This message passing framework is more clear in GraphSAGE [8],
where the hidden representation of each node u is given by a simple aggrega-
tion of its neighbors’ N(u) representations, such as the mean. Similar to GCN,
GraphSAGE can built deeper models with more parameters. The final model
we will use in our experiments is the Graph Attention Network [21], where the
aggregation step is similar to GraphSAGE, but apart from the parameters of
the hidden layer, the aggregation of the neighbors are weighted by an attention
parameter α, different for each edge, learnt through multiple epochs.

These are the most well-known GNN architectures, all of whom serve as
obligatory benchmarks of comparison for a newly proposed method. That being
said, numerous architectures have been proposed in recent years that excel in
node classification. Specifically jumping knowledge networks [25] expands the
message passing by including nodes that may not be in structural vicinity of the
node but whose representations affect the node in terms of statistical influence.
A GNN with ARMA layers [2] passes the input features through an ARMA filter
of a certain depth, simultaneously with the graph convolution, in order come
up with more robust representations. PPNP [13] uses a personalized page rank
to identify nodes that should effect a node during the message passing, and is
trained end to end by parameterizing the power iteration of pagerank.

3 Methodology

Overall, our methodology follows a specific framework, depicted in Figure (2).
Initially, if the dataset contains predefined train-validation-test splits i.e. the
CORA dataset, we use them. If not, we split the dataset in half at random,
resembling an observed and a test set, similar to the literature [17]. The visible
set is broken into the train set comprising of 20 nodes per class as is common for
the datasets we employ, and the rest of the samples are kept for the validation
set. The nodes in the train, validation, and test set are separated to extreme and
regular, based on their degree and a hyperparameter p that defines the threshold
above which a node is considered an extreme sample. These serve as input to
three different instances of the same GNN model. The Extreme-GNN (EGNN )
instance is trained and validated in the extreme nodes of the observed set while
the Regular-GNN (RGNN ) in the respective regular nodes, as described in figure
(2).

The baseline GNN consists of a hidden layer that is double the size of EGNN ’s
and RGNN ’s, hence the number of parameters in the baseline GNN and in its
Extreme-Regular version are equal. The baseline is trained and validated in the
observed part of the network, in the same manner as in the literature.

Independent to the GNN employed, we can formally define this split as two
separate risk minimization tasks, run in parallel. In the general setting, (u, Y ) is
a random pair with unknown joint distribution where u is a random node in the
graph with corresponding label Y ∈ {−1, 1}. The goal is to obtain a classifier
g → {−1, 1} which minimizes the classification risk R(g) def

= minP (g(u) 6= Y ).
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Fig. 2: The scheme of the methodology. The network as binary-class labels (color of
the node) and is split in observed (red background) and test set (blue background)
and in extreme-regular (big-small node). Few of the extreme nodes in the observed
set are passed as training input to EGNN, the rest of the extremes are used
for validation. The same happens with the regular nodes for the RGNN. The
BaseLine receives the combined train set of EGNN and RGNN, and is validated
with the rest of the observed set. The AUC of EGNN is computed over the
extreme nodes of the Test set and the AUC of RGNN respectively with the
regular nodes. The baseline model is evaluated in both.

Using the law of total probability, the classification risk can rewrite as:

P (g(u) 6= Y | e(u) > t)P (e(u) > t)+

P (g(u) 6= Y | e(u) ≤ t)P (e(u) ≤ t) ,
(2)

where t > 0 is a threshold arbitrarily large.
Although, because of the extremely small order of magnitude of P (e(u) > t)

and of its empirical counterpart, nothing guarantees that the minimizer of the em-
pirical risk on all nodes will be optimal on nodes {u : e(u) > t}. Therefore we fol-
low the urge of [10,11] to minimize two risks following the decomposition given by
Equation (2): one dedicated to the extreme nodes R>t = P (g(u) 6= Y | e(u) > t)
and one dedicated to the common nodes : R≤t = P (g(u) 6= Y | e(u) ≤ t). Sorting
the training nodes by decreasing order of number of edges, we introduce the
order statistics u(1) > . . . > u(n) and we denote by Y(i) the corresponding sorted
labels. Let τ > 0 represent a small fraction corresponding to the proportion of
considered extreme nodes, and set k = bnτc such that 0 < k � n. We define two
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risks namely R̂>k and R̂≤k,

R̂>k(g) =
1

k

k∑
i=1

1{g(u(i)) 6= Y(i)},

R̂≤k(g) =
1

n− k

n∑
i=k+1

1{g(u(i)) 6= Y(i)}.

to learn a suitable representation to perform node classification on each
dedicated set of nodes.

4 Experiments
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Fig. 3: AUC gain difference between the baseline and extreme-regular version for
CORA.

To evaluate the advantage of the proposed approach, we measure the Area
Under the ROC Curve [5] of the baseline model’s predictions for the extreme and
the regular nodes of the test set separately. Subsequently, we compute the AUC of
the EGNN in the extreme nodes of the test set and compute the difference with
the aforementioned AUC of the baseline in the same nodes. The same difference
is evaluated for RGNN and the regular nodes in the test set, as is noted in
Figure (2). The aforementioned hyperparameter p is optimized using the same
differences in the validation set.

This procedure is applied in three of the most common GNN benchmark
datasets, the CORA and PubMed citation networks [6] and the Amazon-
Photo co-purchase network [14]. In terms of methods, we test the three most
well-known GNN architectures: GCN [12], GAT [21] and GraphSAGE [8]. The
size of the hidden layers is set to 64 and the learning rate to 0.01, similar to
[17]. As mentioned above, the theoretical properties of EVT have been analyzed
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Fig. 4: AUC gain difference between the baseline and extreme-regular version for
PubMed.
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Fig. 5: AUC gain difference between the baseline and extreme-regular version for
Amazon-Photo.

in the context of binary classification. Since the aforementioned datasets are
multi-class problems, we transform them in binary classification using a one-vs-all
classification , in a similar way as in [10]. We use AUC instead of plain accuracy
for evaluation, because the final class distribution is imbalanced.

The CORA dataset consists of 2485 nodes and 5069 edges, with 5% of the
dataset available for training. The results in 3 showcase the difference in AUC
between the EGNN and the baseline (red bar) and the RGNN and baseline
(blue bar). All models indicate a positive AUC gain over the extreme nodes and
a negative over the regular ones. EGAT and ESAGE surpass the 10% AUC
gain in the extreme region, a possible reason being that the baseline could not
generalize to the extreme nodes in the test set due to insufficient training samples.
We also see a tradeoff between AUC in the two regions, as the one increases
when the other diminishes. In contrast, PubMed, which is larger (19717 nodes
and 44324 edges), indicates a significantly smaller gain. This contradiction takes
place due to the PubMed’s scale and minuscule label rate. More specifically,
Figure (6a) shows the number of train samples for CORA and (6b) for PubMed
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respectively, broken in extreme and regular samples for all examined thresholds
p. One can see that though PubMed is almost 10 times larger, it contains half
the train samples of CORA, which renders the extreme nodes of the train set
as few as 6. A train set of such scale does not suffice for the extreme models
to learn. On the other hand, this affects the distribution of the regular nodes
as well, as their test set is diminished and hence the prediction becomes easier.
Most notably, GCN achieves a positive gain in both types of nodes ( 1% and
3%) (4b).

Similar minuscule differences can be seen in the Amazon-Photo dataset
for the regular and extreme GAT in 5a (−1.5% and 0.7% respectively). The
differences become more prevalent for the next two models, where the difference
between the regular GAT and baseline, surpasses the respective difference for
the extreme GNN. In an attempt to explain this difference, we dive deeper into
the structure of the input samples.

GNNs rely on the structure of the graph as much as they rely on supervision.
This is also prevalent in our results, as the extreme nodes are classified correctly
more frequently than the regular ones. Specifically, throughout all experiments,
RGNN surpasses EGNN only in one case in PubMed (Figure (4c) being a mere
0.3% difference. This happens despite EGNN being trained in a much smaller
training set, in terms of the number of samples, as indicated by Figure (6). A
possible reason is that the models trained on extreme nodes have access to more
structural information, in terms of number of edges, as shown in Figure (7). Note
that since the Amazon-Photo train/test split is not predefined, we perform 10
times the sampling mentioned above and showcase all values with boxplots. The
total size of the train set is predetermined and stable, hence the number of nodes
of the extreme and regular is complementary throughout all figures in (6).
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Fig. 6: The number of extreme and regular nodes that the train set contains in
every degree threshold p.
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Fig. 7: The total number of edges belonging to extreme and regular nodes in the
train set, for all degree thresholds p.

5 Conclusion

In this work, we examined the use of node discrimination in the context of GNN.
This method has been examined for binary classification of non-structured input
and is theoretically grounded from the Extreme Value Theory. We proposed a
similar approach to separate the observed and test samples of a GNN based
on their degree in extreme and regular. Our results indicate that the split can
benefit the extreme samples. While we observed a case where this separation was
beneficial for both types of nodes e.g. GCN at PubMed, the regular samples
tend to suffer a loss, despite having relatively bigger train set.We examined this
pattern further and attributed the increase in the extreme samples’ accuracy to
the number of edges associated with each sample. This means that when regular
and extreme nodes do not have substantial difference in the number of edges i.e.
the dataset is dense such as Amazon-Photo, the separation is not beneficial.
We hope that our study, though inaugural, encourages future works to leverage
further the structural role of the samples towards improving semi-supervised
graph learning. In the future, we plan to examine automatic adjustment of the
number of hidden parameters based on the ratio of extremes to regular nodes, as
well as a node’s influence on other nodes as a structural criterion [16,?].

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science
286(5439), 509–512 (1999)

2. Bianchi, F.M., Grattarola, D., Alippi, C., Livi, L.: Graph neural networks with
convolutional arma filters. arXiv preprint arXiv:1901.01343 (2019)

3. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep
learning in drug discovery. Drug discovery today 23(6), 1241–1250 (2018)

4. Chung, F.R., Graham, F.C.: Spectral graph theory. No. 92, American Mathematical
Soc. (1997)

5. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In:
Proceedings of the 23rd international conference on Machine learning. pp. 233–240
(2006)



Graph Neural Networks with Extreme Nodes Discrimination 11

6. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

7. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Proceedings of the 34th International Conference
on Machine Learning-Volume 70. pp. 1263–1272. JMLR. org (2017)

8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in neural information processing systems. pp. 1024–1034
(2017)

9. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584 (2017)

10. Jalalzai, H., Clémençon, S., Sabourin, A.: On binary classification in extreme regions.
In: Advances in Neural Information Processing Systems. pp. 3092–3100 (2018)

11. Jalalzai, H., Colombo, P., Clavel, C., Gaussier, E., Varni, G., Vignon, E., Sabourin,
A.: Heavy-tailed representations, text polarity classification & data augmentation.
arXiv preprint arXiv:2003.11593 (2020)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

13. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: Graph neural
networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018)

14. Klicpera, J., Weißenberger, S., Günnemann, S.: Diffusion improves graph learning.
In: Advances in Neural Information Processing Systems. pp. 13333–13345 (2019)

15. Monti, F., Frasca, F., Eynard, D., Mannion, D., Bronstein, M.M.: Fake news detec-
tion on social media using geometric deep learning. arXiv preprint arXiv:1902.06673
(2019)

16. Panagopoulos, G., Malliaros, F.D., Vazirgiannis, M.: Multi-task learning for influence
estimation and maximization. arXiv preprint arXiv:1904.08804 (2019)

17. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural
network evaluation. arXiv preprint arXiv:1811.05868 (2018)

18. Stretcu, O., Viswanathan, K., Movshovitz-Attias, D., Platanios, E., Ravi, S.,
Tomkins, A.: Graph agreement models for semi-supervised learning. In: Advances
in Neural Information Processing Systems. pp. 8710–8720 (2019)

19. Strogatz, S.H.: Exploring complex networks. nature 410(6825), 268–276 (2001)
20. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings

of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 817–826 (2009)

21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

22. Wu, J., He, J., Xu, J.: Net: Degree-specific graph neural networks for node and graph
classification. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. pp. 406–415 (2019)

23. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems (2020)

24. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

25. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Repre-
sentation learning on graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536 (2018)

26. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861 (2016)


	Graph Neural Networks with Extreme Nodes Discrimination

