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Abstract. Scholarly data is a relevant source of knowledge for ex-
pert finding in academia. Although peer validation is widely spread
in academia, state-of-the-art methods do not take peer validation into
consideration for expert finding but exploit similarity between experts
instead. We propose a new definition of expertise, taking peer validation
into consideration. That leads us to suggest a new method for expert
finding from scholarly data, combining semantic annotation with graph
mining. First, we extract expertise from a corpus of scientific publications
thanks to semantic annotation through an ontology. We then represent
extracted knowledge in the form of attributed graphs. The originality
of our approach lies in the consideration of the scientific collaboration
links that individuals maintain in the scientific community, in order to
identify the experts on a given topic. Indeed, scientific collaboration links
are carried by the scientific publications themselves. They can easily be
extracted from scholarly data and enable to take into account an implicit
peer validation within a community when identifying experts. To take into
account this peer validation, we use an emerging graph mining method
called core closed pattern mining and use a recent pattern set selection
method that enables to reduce the number of patterns to consider. As we
consider two-mode networks relating authors to the articles they write,
we exploit bi-pattern mining and we introduce a new way to reduce
enumeration by constraining the component patterns to have common
items. We apply our method to a sample of the ACL Anthology corpus
and demonstrate that we can identify relevant sets of experts and their
shared expertise.
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1 Introduction

In academia, expert finding is a recurring problem. Indeed, it is essential to assign
appropriate experts when setting up program committees for scientific events, for



2 S. Zevio et al.

example. The identification of experts and their associated expertise is a critical
task for expert finding. However, determining that an individual is an expert is
not only related to the identification of competencies they master [1] but also
on the receipt of their work by other members of the scientific community. For
example, an individual who is frequently cited on a recurring topic is probably a
relevant expert on the same topic. That leads us to suggest a new definition of
expertise, taking into account peer validation which is widely spread in academia.
State of the art methods do not take peer validation into consideration but exploit
similarity between experts through text mining or graph mining methods [2]
instead. Most promising results have been recently obtained by combining text
mining with graph mining approaches [3].

We propose a method for discovering experts and their associated expertise
from scholarly data using such a combination. A key idea of our work is to exploit
pattern mining in attributed graphs. More precisely, our approach combines
classical semantic annotation methods through an ontology with an emerging
method of attributed graph mining called core closed pattern mining. From
scholarly data, the expertise and collaboration links between experts are extracted.
We obtain an annotated corpus that we represent in the form of attributed graphs.
In a second step, we apply core closed pattern mining to the graphs in order to
extract dense subgraphs under constraints. This method allows to enumerate
maximum sets of common expertise shared by experts and identify the associated
sets of experts while taking into consideration peer validation embodied by the
constraints. In this paper, we introduce restricted bi-pattern mining through
some experiments about bipartite graphs. We also use a recent pattern selection
method, the gβ pattern selection, to reduce the number of patterns to explore.

The rest of the paper is organized as follows. After giving an overview of
related work on expert finding in Section 2, background on core closed pattern
mining and core bi-pattern mining which are useful for our method is given in
Section 3 as well as the pattern set selection process. The proposed method is
presented in Section 4 and the results in Section 5. Finally, Section 6 shows that
our approach allows to identify relevant sets of experts as well as their shared
expertise and discusses the leads to further investigate.

2 Related work

Initially, expert finding systems were based on the self-assignment of expertise
from a selection of predefined keywords [4]. Since self-assignment of expertise is
a time-consuming task requiring continuous maintenance [5], it is essential to
automate the profiling of experts from other sources of knowledge [2]. Two sources
were explored : documents (mainly text), constituting the predominant source, as
well as social networks [2]. Limits of the analysis of social networks are due to the
weak investment of scientists in them. Indeed, all researchers are not registered
or active on social networks. Therefore, despite the relevance of altmetrics used
to rank individuals in social networks [6], they do not alone define individuals
as experts in the scientific community [2]. However, abundant knowledge about
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individuals’ expertise is buried in the research papers, which are considered as
universal working documents in academia [7]. Peer validation is widely used in
academia and scholarly data carries itself the scientific collaboration links that are
vital to evaluate the insertion in the scientific community. Still, the automation
approaches of expert finding from texts are based on the capture of expertise
buried in the text and their assignment to the individuals with whom they
are associated [8,2]. In that case, interdisciplinarity and peer validation are not
considered, as a researcher can be considered an expert on any topic of publication
tackled in their research papers. Taking advantage of the approaches inspired
by the analysis of social networks is therefore essential to capture expertise in
scientific publications as well as to represent scientific collaboration links as an
implicit peer validation. Indeed, the state of the art suggests that problems related
to the identification and classification of experts can be avoided by combining
the identification of expertise with the identification of relationships between
experts [4,2].

According to the literature, the main methods of expert finding are based on
graphs or machine learning [2]. One of the leading systems analysing scholarly
data is Rexplore [9]. It is based on a Temporal Topic-Based Clustering algorithm
[10] which is an unsupervised machine learning algorithm based on clustering of
the researchers’ trajectories. This approach seems more appropriated to trend
analysis rather than expert finding as it does not distinguish a hierarchy between
researchers through any kind of peer validation or classification. Furthermore,
graph-based methods provide better performance than machine learning based
methods [2]. Indeed, representation of knowledge extracted from data through
graphs is quite common in expert recommendation systems. Apart from machine
learning methods, graph-based methods have been used for expert finding, princi-
pally in the analysis of social networks and expertise graphs [11]. Expertise graphs
are social graphs in which nodes are experts and non experts, edges a relation
between them [11,2]. Graph-based methods fall into two main categories: graph
properties (correctness, centrality) and computing algorithms (HITS, PageR-
ank or other algorithm variations) [2]. From RDF graphs, experts can also be
discovered from rules [12]. Bayesian approaches such as clustering thanks to a
Dirichlet algorithm can also be used to detect clusters in a star network [13].
The limitations of graph-based methods lie in their failure in taking into account
the content of documents [2], and therefore in their lack of consideration of the
expertise buried in the working documents. Recent work indicated that the com-
bination of text mining and graph mining methods leads to better performance
than using one of the two methods alone, although their combination remained
anecdotal [14].

Thus, hybrid methods combining machine learning and graph-based methods
have been developed recently. The most effective expert finding system as far
as we know is Wiser [3]. It is an unsupervised system combining document-
centric approaches with entity linking from Wikipedia Knowledge Graph. Every
academic author indexed in Wiser is associated to a graph issued from Wikipedia
representing the Wikipedia entities mentioned in the author’s publication. Entities,
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namely topics of publication, are linked by their semantic relatedness in the
graph. At present, Wiser is considered the state of the art expert finding system.
Their method, though, does not take into account any kind of peer validation but
is based on the analysis of semantic likeness between expert profiles and expert
finding queries.

On the other hand, identifying experts and their associated expertise in
a semantic network can relate to knowledge discovery in attributed graphs.
Recent work focuses on combining the consideration of attribute patterns with
connectivity constraints enabling to enumerate closed patterns occurring in cores,
that is dense areas of an attributed graph respecting a core property [15]. In
attributed graphs describing experts and non experts connected by collaboration
links and described by features, recent work demonstrated that the core closed
pattern mining method is relevant for enumerating maximum sets of common
features shared within cores along their support sets [16]. Adapted to our problem
of expert finding, this method could be relevant for investigating expertise graphs
and enumerating maximum sets of shared expertise along with identifying their
associated experts while taking into account peer validation embodied by the
core properties. The method has already been used in citation networks, with
hub-authority core (also named h-a-HAcore), which is a HITS inspired core
property [16]. In the Section 3, we recall the state of the art of core closed pattern
mining and introduce restricted bi-pattern mining that will be useful in the
modelization of our experiments presented in Section 5.

3 Restricted bi-pattern mining unifies single and
bi-pattern mining

We rely on core closed single pattern mining and bi-pattern mining of attributed
network [17]. In closed pattern mining, a pattern q has an extension also called
a support set e = ext(q) representing its set occurrences in a set of objects V .
This support set defines the equivalence class of all patterns with support set e.
The most specific pattern c with support set e is unique as far as the pattern
language is a lattice and will be considered as the representative of this class. We
may then enumerate closed patterns that represents a condensed representation
of all patterns in the object dataset. The closed pattern is obtained by using
an intersection operator int that applies the lowest upper bound operator ∧ to
the set of object descriptions d[e]4. In the attribute pattern setting, objects are
described as itemsets i.e. subsets of a set of items I. In this case the intersection
operator simply is the set theory intersection operator ∩.

When applying an operator p to ext(q) that reduces the support set into a
so-called abstract support set, the most specific pattern c of the class of pattern
with same abstract support set e = p(ext(q)) as pattern q is defined and obtained
as:

c = f(q) = int ◦ p ◦ ext(q) (1)

4 d[e] is the image of e by d, i.e. d[e] = {d(v)|v ∈ e}
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This requires p to be an interior operator, which is the case when the object
set V is the set of vertices of a graph G = (V,E) and that p is an operator that,
given a vertex subset W , returns the core of the subgraph induced by W [15] i.e.
the largest subset S of W whose vertices all satisfy some core property P within
the subgraph induced by S. The resulting abstract closed patterns are called core
closed patterns.

We display Figure 1 an attributed network together with its 2-core pattern
subgraph, whose vertices all have degree at least 2, and its 3-nearstar core pattern
subgraph, whose vertices are stars, i.e. have degree at least 3 or are satellite
connected to some star.
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Fig. 1: An attributed network. Pattern a occurs in vertices 123457 so inducing the
pattern a subgraph represented as bold vertices and edges. (a) On the left within
the pattern a 2-core subgraph depicted in blue, the vertices have in common the
core closed pattern ab. (b) On the right is pictured the pattern a 3-nearstar core
subgraph, made of a star (vertex 3) and three satellites (vertices 1,2, 4). The
associated core closed pattern is again ab.

Bi-pattern mining [17] allows to mine two-mode networks G(V1, V2, E) whose
edges in E relate vertices from V1 to vertices from V2. A vertex subset pair
(W1,W2) induces then a subgraph G(W1,V2) whose edges relate W1 to W2. Bi-
pattern mining follows from the remark that one may extend single pattern
mining by:

– considering pairs of patterns q = (q1, q2) called bi-patterns. q1 is a subset of
some set of items I1. while q2 is a subset of another set of items I2. I1 and
I2 may have common items.

– extending accordingly support sets to support set pairs ext(q) = (ext1(q1),
ext2(q2)) where exti(qi) is the support set of qi within the object set Vi. We
also writes, when convenient, exti(qi) as ext(Vi, qi).

– defining the intersection operator int that applies to a pair of object subsets
e = (W1,W2) ∈ V1 × V2 as int(e) = (int1(W1), int2(W2)) where inti(Wi) is
the intersection of the objects descriptions in Wi.

– considering an interior operator which reduces the pair of object subsets
e = (W1,W2) to a smaller pair e′ = (W ′

1,W
′
2) i.e. a pair such that W ′

1 ⊆W1

and W ′
2 ⊆W2.



6 S. Zevio et al.

Accordingly to Equation 1 the core closed bi-pattern c is defined as the most
specific bi-pattern (considering both components) whose support set pair is the
same as bi-pattern q. Cores have then to be pairs of vertex subsets, and are
called bi-cores. Bi-core definitions rely on pairs of bi-core properties (P1, P2). As
an example, in the h-a BHA bi-core subgraph G(C1,C2) all nodes from C1 have
degree at least h and all nodes from C2 have degree at least a.

3.1 Restricted bi-pattern mining

In this section we introduce a new way to restrict bi-pattern mining: whenever
the two sets of items I1 and I2 used to describe the two kind of nodes intersect,
we may consider only bi-patterns q1, q2 such that q1 and q2 have the same items
on a part F of this intersection. We have then two extreme cases:

– F = ∅ is the unrestricted bi-pattern mining case discussed above.
– F = I1 = I2 = I is the single pattern mining case. It concerns networks in

which the vertex sets represents objects of same type and results in bi-patterns
of the form (q, q).

The natural scenario where restricted bi-pattern mining appears is whenever
investigating a two-mode network in which there is some common attribute subset
I1∩ I2 shared by nodes from the two modes. It occurs in our experiments because
authors and articles they write both are concerned with some scientific domain
which is associated to an item. Though the meaning of such an item may slightly
differ whether the node represents an author or an article, it still makes sense
to investigate bi-patterns in which the scientific domain has to be shared by all
nodes in the core subnetwork.

We define F -restricted bi-pattern mining by considering a subset F of I1 ∩ I2,
called the constrained common part, and requiring that in any F -restricted bi-
pattern (q1, q2), and for any item i from F , either i belongs both to q1 and
q2 or i belongs to neither of them. Fortunately, in such a restricted bi-pattern
language, given some restricted bi-pattern (q1, q2) there still is a unique most
specific restricted bi-pattern whose support set pair is the same as (q1, q2). As a
consequence, we may define a closure operator and obtain core closed bi-patterns.

3.2 gβ Pattern set selection in attributed graphs

Now we deal with a recurrent question in pattern mining: how to select a few
number of relevant and non redundant patterns ? gβ is a simple and general post-
processing pattern subset selection scheme[18] that selects within a pattern set P
a pattern subset S such that i) in S pairwise distances between patterns all exceed
some threshold β and ii) S maximizes the sum of the individual interestingness g
of its patterns. This supposes that we have some distance definition on patterns
together with some positive interestingness measure g. The gβ algorithm is a
greedy algorithm that guarantees the distance constraint and efficiently returns
an approximate optimal solution S. The greedy gβ algorithm has worst case
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complexity O(|P ||S|) both in number of comparisons and number of distances to
compute. As a consequence it is very efficient when a strong distance constraint
β is applied. It consists in i) an initialisation step in which an empty list S is
defined and in which patterns from P are sorted in decreasing order of g values
ii) a search step in which each pattern in P is in turn either rejected, when its
distance to some pattern from the current S list is smaller or equal to β, or added
to S.

Bi-Pattern Set Selection To apply gβ to bi-pattern set selection we need to
define the distance d between bi- pattern as well as the interestingness measure
g.

Distances In the single pattern mining case, the core closed pattern q is associated
to a vertex subset, its core support set p ◦ ext(q). As a distance d(q, q′) between
patterns q and q′ we will use the Jaccard distance between their core support
sets. Recall that the Jaccard distance between two subsets X and X ′ of some
set has range [0,1] and is defined as dJ(X,X ′) = 1 − |X∩X′|

|X∪X′| . We then have:
d(q, q′) = dJ(W,W ′) where W is the core support set of q and W ′ is the core
support set of q′.

Regarding bi-patterns we compute the distances between their pattern compo-
nents and take the maximum value. This is a conservative choice: when bi-pattern
q is selected, to remove bi-pattern q′ both components of q′ have to be at distance
less than β from q. We have then:

d(q, q′) = max(dJ(H,H ′), dJ(A,A′)) (2)

where (H,A) is the core support set pair of bi-pattern q and (H ′, A′) is the
core support set pair of bi-pattern q′.

Selecting and ordering patterns In the gβ algorithm, g only role is in the (bi)-
pattern ordering by decreasing g values. This pattern ordering may have a high
impact on the pattern set we obtain. We further consider local modularity as in
[19], i.e. a measure that have high positive values whenever there are more inside
links in a subgraph, with respect to all links whose extremities are within the
subgraph, than expected.

4 Methodology and datasets

In the light of the state of the art, we propose an approach for expert finding
whose originality is based on the combination of the capture of underlying
expertise within working documents with the consideration of an implicit peer
validation between experts thanks to collaboration links carried by working
documents. The preliminary step consists in extracting the underlying expertise
and scientific collaboration links within scholarly data. Then, the knowledge
previously extracted is represented through attributed graphs. The final step
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consists in using core closed pattern mining to identify sets of experts connected
in the graphs along with the expertise they share. We also set up an evaluation
framework.

4.1 ACL Anthology corpus

We consider a sample of the ACL Anthology corpus [20], composed of 13322
research papers, written by 10724 authors and published between 1985 and
2008 in the areas of computational linguistics and natural language processing 5.
The original ACL Anthology corpus [21] is comprised of 48104 research papers.
The sample thus covers approximately 28% of the original corpus. For each
paper, descriptors are available including an identifier, authors list, title, year of
publication, abstract, cited authors, titles of the cited publications and years of
publication of cited publications.

4.2 Labeling publications with ontology concepts

From a corpus of scientific publications, underlying expertise and scientific collab-
oration links can be extracted. Abstracts carry semantic concepts corresponding
to topics of publication taken as expertise. Furthermore, coauthor and citation
links convey information about endorsement of authors’ work by the scientific
community. Indeed, if a researcher can be considered as a prominent member of
the scientific community when maintaining coauthorship with numerous others
researchers. In addition, if a researcher is frequently cited by others, it is likely
that this researcher is eminent and can be considered as an expert. If machine
learning methods are commonly used in order to extract expertise buried in texts
[8,2], semantic annotation through an ontology can be employed to identify se-
mantic concepts within texts. Using ontologies to extract semantic concepts from
text enables to have interpretable and interoperable results and to exploit richer
and more specialized languages than simple term recognition. The Computer
Science Ontology has recently been released [22] and used to classify research
papers [23] in computer science [22] through a syntactic and a semantic recogni-
tion modules [23]. The syntactic recognition module identifies semantic concepts
from the ontology whose labels are explicitly recognized in the abstract [23].
The semantic recognition module infers the presence of semantic concepts from
the ontology using a morphosyntactic labeling of terms and lexical embedding
[23]. The classifier enables to automatically classify research papers according to
the rich taxonomy of fine-grained concepts issued from the Computer Science
Ontology [22,23]. For example, the semantic web is described by more than 40
sub-topics in the Computer Science Ontology, such as Linked Data or SPARQL.
We performed a semantic annotation of the ACL Anthology corpus. From ab-
stracts, 2714 semantic concepts derived from the Computer Science Ontology [22]
have been extracted on our behalf. We consider that semantic concepts from the
Computer Science Ontology found in abstracts are underlying expertise within
scientific publications. Indeed, they correspond to topics of publication.
5 ACL Anthology corpus sample : url to dataset anonymized
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4.3 Evaluation and gold standard

We use a review article [24] from 2010 on the domain of information extraction
as a source to set up a gold standard. Information extraction belongs to the
areas covered by the ACL Anthology corpus. Furthermore, the review article
was published few years after the last ACL Anthology corpus’ articles. Among
the 90 references belonging to the review article, 47 also belong to the ACL
Anthology corpus. The semantic concept from the Computer Science Ontology
the most used to describe the abstracts of the 47 publications is information
extraction (IE for short). This motivates our choice for using the review article as
an evaluation framework. Thus, we select closed abstract patterns describing the
information extraction domain for each of our graph. We use classic precision and
recall measures to evaluate the relevance and coverage of the publications and
authors we obtain as key documents and experts on the closed pattern selected
containing the domain of information extraction. Among the authors who wrote
the 47 publications, 97 also belong to the authors of the ACL Anthology corpus
sample. 133 semantic concepts were used to describe the 47 publications.

5 Experiments

In this section we will present the experiments that we conducted when applying
our method of expert finding combining semantic annotation with core closed
(bi-)pattern mining on the ACL Anthology corpus and evaluate results obtained
according to our evaluation framework.

5.1 Encoding the information in a labeled graph

Our goal is to identify experts and their associated expertise with the assumption
that expertise in the academic community is not self-assigned by authors but
derives from peer approval. We formulate the hypothesis that this peer approval
can be effectively encoded in form of links in a network of scientific collaboration
and that the identification of experts and their associated expertise benefits
from taking into account this relational dimension. Many labeled graphs can be
generated from the ACL data corpus. Authors of publications are considered
as potential experts: they form the vertices of the graph. Semantic concepts
identified in publications are considered as potential expertise: they are used to
label vertices. Links in the graph represent the network of scientific collaboration.

Given a scientific network graph whose vertices are potential experts labelled
with potential expertise, the application of abstract pattern mining to the graph
should allow for the identification of subsets of related experts, linked in the
scientific collaboration network and sharing the same set of peer-reviewed exper-
tise. Obviously, among the set of graphs that can be constructed from the ACL
dataset, not all of them translate with the same quality the dimensions of peer
endorsement. In this study we will present, for the sake of clarity, results for two
of them only: Gco and GA→P graphs.
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– Co-authors graph Gco offers the least confidence but is also the simplest way
to represent a scientific endorsement. Indeed, in this graph each co-author is
a potential expert of all the concepts found in the publications he co-authors.

– The bipartite citation graph GA→P offers more confidence. The scientific
collaboration network connects authors with the bibliography they use in
their articles. Authors and publications are labeled with the same semantic
concepts. A group of experts will be identified because they all use the same
semantic concepts and cite the same publications that use the same semantic
concepts.

Depending on the nature of the graph we will apply different abstractions to it.
The choice of the abstraction determines a constraint of connectivity between the
authors that we want to see verified in the sub-graph of the scientific collaboration
network induced by the sets of authors identified as experts because retained by
the enumeration.

For the co-authoring simple graph Gco we explore the results of the k-core
and k-nearstar-core abstractions. The authors and pattern language is LA which
is described hereunder as part of the language pair (LA, LP ) used in the bipartite
graph GA→P .

Regarding the citation graph GA→P , we consider the F-restricted-h-a-BHA
bi-core abstraction as introduced in the section 3.1. In the graph GA→P , the
pattern language on authors is LA = TA ∪ C where

– TA is a set of constraints on the publication period of authors in A. A
publication period is an interval ∆A =]l, r] where l and r are both thresholds
belonging to the set of years T = {1992, 1999, 2004, 2007} ∪ {−∞,∞}. For
instance the publication period of an author who has published between
1997 and 2006 is ∆A =]1992, 2007]. Consider then some author, TA allows to
encode two kind of constraints on ∆A:
• ∆A ∩ ]l, r] occurs whenever ∆A has a non void intersection with the

interval ]l, r].
• ∆A ⊇]l, r] occurs whenever ∆ includes the interval ]l, r].

For instance, consider two authors with respective publication periods ]1992, 2007]
and ] −∞, 2004] they are both occurrences of pattern ∆A ⊇ ]1992, 2004]
and also both occurrences of pattern ∆A ∩ ]1999, 2004]. Clearly ∆A ⊇ ]x, y]
is more specific (is a stronger constraint) than ∆A ∩ ]x, y].

– C constrains the semantic concepts appearing in publications. Let X be set of
semantic concept appearing in the publications authored by some author. A
Pattern in C is then of the form “X ⊇ S” where S is a semantic concept sub-
set. As an example, the pattern “X ⊇ {information extraction, languages}”
occurs if the author has published articles concerning information extraction,
languages and possibly other semantic concepts. We further simply write
such patterns as sequences, e.g. information extraction, languages, and when
convenient in a concise way as infor ._extr ., languages.

In the same way, the description language of publications in P is LP = TP ∪ C
where TP is a set of time constraints on the publication year YP . The part
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constraining YP in a pattern is then of the of the form ti < YP ≤ tj ], where
ti and tj belongs to the same threshold set T as in TA. We also use semantic
concept patterns from C regarding publications, in which case X is the semantic
concept subset whose concepts appear in the publication.

Regarding the citation graph GA→P , we restrict our search to restricted
bi-patterns in which the concepts are the same in both of its components, i.e.
we consider bi-pattern q such that q = (qA, qP ) satisfies qA = qTA

∪ qC and
qP = qTP

∪ qC .

Example 1.
((inf ._extr ., ∆A ⊇ [1992, 2004[), (inf ._extr ., YP ∈ ([1999, 2007[))
is a restricted bi-pattern while
((inf ._extr ., ∆A ⊇ [1992, 2004[[), (inf ._extr ., languages, YP ∈ [1999, 2007[)) is
not.

The occurrences of the former is represented as a pair (SA, SP ) where

– SA contains authors whose publication period contains [1992, 2004[ and whose
publications contain the semantic concept information extraction.

– SP contains cited publications whose publication year is within [1999, 2007[
and that contains the semantic concept information extraction.

We further denotes restricted bi-patterns in a simpler way, namely in this example:
inf ._extr ., ∆A ⊇ [1992, 2004[, YP ∈ ([1999, 2007[.

Furthermore, as we consider 3-3 BHA bi-cores, authors from SA should have
cited at least 3 publications in SP while publications in SP should have been
cited by at least three authors from SA.

In order to be able to evaluate the quality of our results throughout this
study, we will rely on the gold standard we have set up with identified experts in
the field of information extraction. We will therefore initially focus on experts
and publications labeled with the semantic concept information extraction (IE
for short).

5.2 High degree authors are not always experts

First we explore the naive idea that authors who are experts in a field would
be more connected in the scientific network induced by that field of expertise.
If we follow this idea, authors who are experts in information extraction (IE)
should be among the authors with the highest degree in the graph induced by
the authors labelled with the IE concept.

As shown in figure 2, selecting the topK authors of the highest degree in these
graphs does not allow efficient selection of experts in the field of information
extraction. In order to identify experts in a field among a graph of authors, it
is therefore necessary to go beyond the identification of single authors highly
connected. One way to do this is to consider that expert of a field should be close
in the network. Though it would be more efficient to search for connected sub-
networks of authors sharing the same expertise. A solution consists in enumerating
the sub-networks corresponding to core closed patterns of a labeled graph.
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Fig. 2: Gco and GA→P vertices are ordered by decreasing number of degree. In
black (resp. grey) the cumulative number of gold vertices (among 97) in the topK
vertices.

5.3 Identifying the abstraction best preserving the information

As shown in figure 3, the lower the core constraint is - i.e. low value of k-, the
better is the coverage of the graph vertices and the better is the recall the gold
standard IE experts in the union of the found core closed patterns.

First, the core closed patterns satisfying the k-core property in Gco have been
enumerated. The overall low recalls indicates that the abstraction of k-core is
probably not the best way to identify experts (here in the field IE).

The core constraint property has therefore been relaxed to test the efficiency
of the k-nearstar core. It appears that the number of core closed patterns explode
very fast when decreasing the k-nearstar constraint. For a similar number of
patterns, the k-nearstar property gives a better recall at the cost of increasing
the size of the support set of the patterns. The much larger size of the k-nearstar
core patterns appear to be not very suitable to identify the experts who may be
few in number in a particular domain of expertise.

Graph |P | |V A
P | |V IE

P | Precision Recall
Gco(6-core) 17875 2258 441 0.091 0.412
Gco(20-nearstar) 14530 4619 667 0.109 0.753
GA→P (3-3-BHA) 56934 5878 801 0.096 0.794

Table 1: See notations in figure 3

Finally, the F-constrained-h-a-BHA core property has been explored on the
bipartite graph GA→P . In order to determine whether the parameters h and a
should be chosen balanced (h = a) or unbalanced (h 6= a), the mean out-degree
from the ’author’/’hubs’ vertices H̄ and the mean in-degree entering from the
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Fig. 3: P : the number of patterns, V A
P the ’author’ vertices covered by the

extensions of P . V IE
P the ’author’ vertices labelled with the concept IE covered

by the extension of P . Left: The cover of the authors of Gco (resp. GA→P ) by
the patterns enumerated with the k-core and the k-nearstar properties (resp.
balanced h-a-HA core property). Right: The recall over the 97 gold standard IE
authors covered by P .

’publication’/’authorities’ vertices Ā of this graph were calculated. The values of
H̄ and Ā found are similar (H̄ = 9.7 and Ā = 7.8) indicating that the graph is
globally balanced. Therefore it is chosen to explore in the following of this study
balanced values of (h, a) pairs of parameters.

As shown in figure 3 and table 1 the F-constrained-h-a-BHA core property
offers a better recall and a similar precision than the two other properties.
Moreover it allows to use rather low constraint parameters allowing to identify
small groups of experts. As expected, the best recall is obtained for the balanced
pair (h, a) = (3, 3). For these reasons, the rest of the study will focus on the
study of the F-constrained-3-3-BHA core property patterns.

5.4 Identifying the experts with F-constrained-3-3-BHA core
property

The enumeration of the F-constrained-3-3-BHA core closed patterns on the
bipartite graph GA→P leads to 56934 patterns. As it is impossible to extract any
knowledge from such a large number of patterns it is necessary to reduce the
number of patterns. First, in order to make the expertise associated with the
expert sets specific enough, the size of the support set of the patterns of interest
is limited to 100 authors at maximum. The 14509 patterns that have more than
100 authors are removed. The remaining 42425 patterns are still too numerous
so we seek to reduce their number by selecting a interesting subset of them.

The patterns are ordered in decreasing local modularity[19] and are gβ-
selected for different β-values. As expected the number of selected patterns S
decreases sharply when the distance criterion β increases. However the number
of ’author’ vertices V A

S present in the union of the extensions of the patterns S
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remains rather stable indicating that the selection preserves the coverage of the
graph vertices. Similarly, the number of selected patterns containing the semantic
concept IE (SIE ) is also greatly reduced to 12 patterns for β = 0.8. Interestingly,
the number of authors V A

SIE
covered by the patterns SIE decreases rather slightly

from 215 authors for β = 0.0 to 163 for β = 0.8 preserving the precision and the
recall with respect to the gold standard.

The best precision (0.28) is obtained for β = 0.8 which selects 12 patterns
containing the semantic concept IE with a recall of 0.46. These patterns are listed
in table 3 and described in table 2.

Pattern 1 2 3 4 5 6 7 8 9 10 11 12
|VS | 167 82 101 35 26 34 25 14 10 7 6 6
|V A

S | 100 51 48 19 16 18 14 8 6 3 3 3
Precision 0.31 0.45 0.25 0.42 0.38 0.61 0.64 0.50 0.67 0.00 1.00 -
Recall 0.32 0.24 0.12 0.08 0.06 0.11 0.09 0.04 0.04 0.00 0.03 0.00

Table 2: Metrics on the 12 SIE patterns gβ-selected with β = 0.8 from the
F-constrained-3-3-BHA core patterns.

P Description
1 inf._extr., ∆A ∩ ]2007,∞], YP ≥ 1999
2 inf._extr., nat._lang._processing, ∆A ∩ ]1992, 2007], YP ≤ 2007
3 inf._extr. ∆A ⊇ ]−∞, 1999], YP ≤ 2004
4 inf._extr., languages.., ∆A ⊇ ]1999,∞], YP ≤ 1999
5 inf._extr., user_information, ∆A ∩ ]1992, 1999], 1992 < YP ≤ 2007
6 inf._extr., learning, ∆A ⊇ ]1999, 2007], 1992 < YP ≤ 2007
7 inf._extr., ∆A ⊇ ]1992, 2007], 2004 < YP ≤ 2007
8 inf._extr., cond._random_field, ∆A ∩ ]2004, 2007], 1999 < YP ≤ 2007
9 inf._extr., languages, named_entity_recog., ∆A ⊇ ]1999,∞], 1992 < YP ≤ 2007
10 inf._extr., correl._analysis, ∆A ⊇ ]1992,∞], YP ≤ 1999
11 inf._extr., languages, nat._lang._processing, ∆A ⊇ ]1992, 2004], 1992 < YP ≤ 1999
12 inf._extr., named_entity_recognition, ∆A ∩ ]1992, 2004], 1999 < YP ≤ 2004

Table 3: The 12 SIE patterns gβ-selected with β = 0.8 from the F-constrained-3-
3-BHA core patterns.

The 9th pattern has a precision of 0.67. It is composed of 6 authors and
4 cited publications. 4 of the authors belong to the gold standard. A manual
evaluation of the two remaining authors showed that they are also experts even
if they are not listed in the gold standard.

In order to test our method on another domain, we followed the same proce-
dure (F-constrained-3-3-BHA core closed pattern enumeration followed by a gβ-
selection for β = 0.8) and extracted the patterns related to the semantic concept
’sentiment_analysis’ (SA). 2 patterns are identified : P1 = sentiment_analysis,
semantic_orientation, ∆A ⊇ ]2004,∞], 1999 < YP ≤ 2007} and P2 = {seman-
tic_analysis, ∆A ∩ ]2004,∞], YP > 1999}. Manual validation of the experts
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obtained on these patterns with the chapter named "Sentiment Analysis" (SA)
belonging to the book from which IE is issued. 3 authors support P1 while 49
authors support P2 and 3 and 38 authors are also found in the references of SA
respectively.

6 Discussion

In this paper, we have showed that our approach combining semantic annotation
and graph mining while taking into account peer validation for expert finding
enables to identify relevant sets of experts along their shared expertise from
textual documents. Thus, we suggest to extend the definition of expertise. We
recommend that determining than an individual is an expert on a specific
competency should not only rest on the assignment of their competencies but
also require a validation process through a professional network. We have also
introduced gβBi-Pattern set selection and restricted bi-pattern mining for the
sake of our experiments on core closed pattern mining on bipartite graphs. Future
work should focus on generalizing patterns which are very specific. Our idea is to
extend a pattern by suggesting frequency analysis of patterns at distance < β in
vertices belonging to its extension.
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