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Abstract. Incorporating knowledge graphs (KGs) into recommender
systems (RS) is promising in improving the performance and explainabil-
ity of recommendation. Existing methods assume that the incorporated
KG is completely correct without any error. However, errors and noise
are inevitably introduced KGs during construction, which probably can
hurt the performance of RS that treat errors in KGs as true ones. Moti-
vated by it, we propose a novel end-to-end framework trustworthiness-
aware knowledge graph representation for explainable recommender sys-
tems (TrustRec). Specifically, TrustRec can detect and measure possible
noises by leveraging three-level structural information in the KG from
a small to the big picture, namely subgraphs (i.e., motifs), communi-
ties and global. The output trustworthiness is viewed as the weight of
knowledge to incorporate with RS. If the higher trustworthiness of the
knowledge is determined, the more knowledge will be integrated into the
RS. Additionally, to distinguish attributes between users (e.g., Thomas
as a user) and items (e.g., Titanic as a movie) in which both are very
different types of objects, we develop a new translation-based RS method
to enable the user and item to utilise different mapping functions.

Keywords: Knowledge Graph Representation Learning · Explainable
Recommender Systems · Trustworthiness

1 Introduction

The explosive growth of media services has provided overwhelming choices for
users, such as movies, music and series. Recommender systems (RS) aims to
ease information explosion and largely reduce users’ effort in finding things of
interest. Collaborative filtering (CF) [19] is a popular method for RS, which
learns user/item similarity from existing historical interactions. However, CF-
based methods usually suffer from the sparsity of interaction and cold-start
problem. To address these issues, existing works incorporate auxiliary sources as
side information, such as social networks [15] and images [41].

Knowledge graphs (KGs) as one type of auxiliary sources contain rich knowl-
edge in the form of heterogeneous graphs where nodes correspond entities and
edges correspond to relations. Knowledge in KGs is presented as in the form of
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the triple (head entity, relation, tail entity) [36]. For example, (Donald Trump,
president of, America) indicates that Donald Trump is the president of Amer-
ica. Knowledge graph representation (KGR) aims to learn low-dimensional dis-
tributed embedding of entities and relations. Recently, some KGs (e.g., Free-
base [4] and Probase [38]) are successfully applied to many applications such as
question answering [10], text classification [35].

For recommendation, items can be mapped into KGs, and thus KGs can
provide extra semantic connectivity information between items. The usage of
knowledge graph within the context of recommender systems can address the
item cold-start and sparsity problem of CF. The reason is that (1) KG intro-
duces extra semantic connections among items, which can provide new items
with more interactions to RS; (2) KG consists of a variety of relation types,
which helps extend a user’s interests reasonably and increasing the diversity
of recommended items. Moreover, KG can bring explainability to recommender
systems since KG connects a user’s historical records and the recommended
ones based on relations in the KG. Recently, knowledge-aware RS has shown
great potential to improve accuracy and explainability. Collaborative Knowl-
edge base Embedding (CKE) [41] combines CF with pre-processed knowledge
graph embedding in a unified Bayesian framework. RippleNet [32] propagates
users’ potential preferences in the KG and explores their hierarchical interests.
Multi-task learning for knowledge graph enhanced recommendation (MKR) [34]
simultaneously train KGE and RS tasks with a deep end-to-end framework and
complement each other. Knowledge-enhanced translation-based user preference
model (KTUP) [7] considers the incomplete nature of KG and transfer the re-
lation information from KG to RS for better understanding the reasons that a
user likes an item.

However, when incorporating the knowledge from KGs to RS, the most ex-
isting methods [7, 32–34, 41] largely assume that the knowledge in KGs is com-
pletely correct without any noises. In the real-world KGs, some errors and noises
are inevitably introduced in the process of automatically constructing large-scale
KGs due to limited labour supervision [39, 18, 11]. Liang et al. [21] and Stefan
et al. [13] verify the existence of errors and noises in KGs. It is essential to con-
sider errors and noises in KGR incorporated with RS since KGR learns entities
and relations with distributed representations mainly based on triple facts in
KGs. Intuitively, errors and noises in KGs as auxiliary data possibly hurt the
performance and interpretability of RS that treat errors in KGs as true ones. Ad-
ditionally, to achieve explainability, KTUP [7] explicitly model preferences and
regard the interaction between user and item as a form of translation. However,
it fails to distinguish attributes between users and items in which both are very
different types of objects. Typically, users (e.g., Tom as a customer) and items
(e.g., Titanic as a movie) are different types of objects and thus they should be
proceed in different ways.

To address the above problems, we propose a novel end-to-end framework
trustworthiness-aware KGR for recommender systems (TrustRec). TrustRec
can detect and measure possible noises in KGR as trustworthiness while in-
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corporating with RS. Trustworthiness is a value within the interval [0, 1] that
indicates the degree of certainty that the knowledge expresses. Specifically, to
determine the trustworthiness, we propose a new method to leverage three-level
structural information in KGs from a small to big picture, namely the subgraph
(co-occurrence in the same type of motif), communities (co-occurrence in the
same high association group) and global (correlation strength on all paths). The
output trustworthiness is viewed as the weight of knowledge to incorporate with
RS. If higher trustworthiness of the knowledge is determined, the more knowledge
will be integrated into the RS. Furthermore, inspired by TransD [16], TrustRec
can distinguish attributes between users and item by projecting users and items
in different ways. We summarise our contributions as follows:

1. We propose TrustRec to detect noises in KGR while incorporating with RS
by considering internal structural information of KGs that are the motif,
communities and global.

2. To better model the interaction between users and items, we propose a
translation-based method to distinguish the attribute between users and
items.

2 Preliminary

2.1 Notations and Problem Formulation

In this section, we introduce notation and formulate the KG enhanced recom-
mender systems problem. We denote scalars by lowercase italic letters, e.g., a,
vectors by lowercase boldface letters, e.g., a, matrices by uppercase boldface,
e.g., A.

We have a knowledge graph G = {E ,R}, which is comprised of massive entity-
relation-entity triples (h, r, t), in which h ∈ E , r ∈ R, and t ∈ E denote the head,
relation, and tail of a knowledge triple, E and R are the set of entities and
relations in the knowledge graph, respectively. For example, the triple (Forrest
Gump, film.film.director, Robert Zemeckis) states the fact that Robert Zemeckis
is the director of the film “Forrest Gump”. In many recommendation scenarios,
an item v ∈ V corresponds to an entity e ∈ E (e.g., item “Forrest Gump”
in MovieLens also appears in the knowledge graph as an entity). The set of
entities E is composed from items V (V ∈ E) and non-items E/V (e.g., entities
corresponding to item properties). We construct a directed graph G from a KG
G. Each entity e ∈ E is abstracted into a node. If there is a relation from the
entities e1 to e2, a directed edge will exist from node e1 to e2. Therefore, a KG
with n entities can be mapped as a directed graph G with n nodes.

In an explainable recommender system, let V = {v1, v2, · · · } and U = {u1, u2,
· · · } denote sets of items and users. The user-item interaction matrix Y is defined
according to users’ implicit feedback. We represent each user behaviour as a
triplet, (u, preference, i), where yuv = 1 indicates that user u has interacted
with item v with a preference p transferred from R, otherwise yuv = 0. For
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example, a user Thomas watched a movie Forrest Gump due to a director (i.e.,
film.film.director).

Given user-item interaction matrix Y and knowledge graph G, our task is to
predict whether user u has a potential interest in item v with which this user
has not engaged before. Specifically, we aim to learn a prediction function ŷupv
= F(u, p, v|Θ, Y,G), where ŷupv denotes the probability that user u will engage
with item v with preference p, and Θ are model parameters of the function F .

2.2 Trustworthiness in Knowledge Graph

Most traditional knowledge graph construction methods usually involve huge hu-
man supervision or expert annotation, which are extremely labour-intensive and
time-consuming [39]. Recently, large-scale knowledge graphs (e.g., DBpedia [1],
Freebase [4]) are productively and automatically constructed from from unstruc-
tured web text (e.g., NELL [8]). However, some noises and errors are inevitably
introduced in the process of automation due to limited labour supervision [13,
21].

Existing KG-based tasks (e.g., knowledge completion [20]) or applications
(e.g., question answering [23]) assume knowledge in the existing KG is completely
correct. To model errors in KGs, Xie et al. [39] proposed a triple confidence
awareness knowledge representation learning framework, which detects possible
noises in KGs while learning knowledge representations with confidence simulta-
neously. They introduced the triple confidence to conventional translation-based
methods for knowledge representation learning. Jia et al. [18] synthetically ex-
tracted trustworthiness of the triples from knowledge graph embedding, entity
resource and path information of the knowledge graph. Most KGs representa-
tions consider deterministic KGs (e.g., Freebase) that consist of deterministic
facts. Chen et al. [9] proposed a KGs embedding model on uncertain KGs that
associate every fact with a confidence score. Dong et al. [11] built a large-scale
uncertain knowledge graph, and fused multiple extraction sources with prior
knowledge derived from an existing knowledge base.

2.3 Knowledge Graph Representation

Knowledge graph representation is used to embed entities and relations into low-
dimensional vectors while preserving the semantic and structural information
[17]. There are two categories of KGE methods: (1) Translational models exploit
distance-based scoring functions. TransE [6] follows an assumption that h and t
are connected by r with low error if a triple (h, r, t) holds, and thus formulates
h + r ≈ t. However, TransE has flaws when dealing with 1-to-N, N-to-1 and N-
to-N relations. To address these issues, TransH [37] introduces relation specific
hyperplanes, which each relation r as a vector r on a hyperplane with wr The
embeddings h and t are first projected to the hyperplane of relation r to obtain
vectors h⊥ = h − w⊥r hwr and t⊥ = t − w⊥r twr, and then h⊥ + r ≈ t⊥. For
TransE and TransH, the embeddings of entities and relations are in the same
space. However, entities and relations are different types objects, it is insufficient
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Fig. 1. The whole framework of TrustRec includes trustworthiness, recommendation,
interpretability and KGR modules.

to model them in the same space. To address this issue, in TransR [22], h and t
are projected to a new space so that relation r focuses on through the matrix Mr

and then Mrh+r ≈Mrt. (2) Semantic matching models exploit similarity-based
scoring function. They measure plausibility of knowledge triples by matching
latent semantics of entities and relations, such as RESCAL [26], DistMult [40],
and HolE [25].

3 Methodology

A general intuition behind TrustRec is that if the higher trustworthiness of
the knowledge is determined, the more knowledge will be integrated into the
RS. The whole framework of TrustRec (Fig. 1) can be functionally decomposed
into four modules, namely trustworthiness, recommendation, interpretability and
KGR. The left side is the input user-item interactions and a KG. The right side
of the input is an explainability module. The middle top and bottom are the
recommendation and KGR modules respectively. The right is a pool of three-
level trustworthiness estimators. The output of estimators is refined and forms
the input to weight the relation and entity embeddings while incorporating with
RS.

3.1 Trustworthiness Module

Given a triplet (h, r, t), we propose a method to determine the trustworthiness
of this triple from three-levels structural information that are subgraph (i.e.,
motifs), communities and global, and corresponding based on the below three
estimators. 1) A triple (h, r, t) is contained by the same subgraph connectivity
pattern; 2) A triple (h, r, t) is found in the same high association community;
3) resource is allocated to tail t from head h through all paths in the entire KG.
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Motif-aware Trustworthiness. Motifs are fundamental subgraph patterns
in graphs, and show complex connectivity patterns beyond two nodes [3, 2].
Motifs demonstrate very important local structures underlying various complex
networks, such as social networks [12].

We use the strength of a tie between head h and tail t linked by a relation
r to measure the trustworthiness of triple (h, r, t). If head h and tail t have a
strong tie, it seems to be hopeful that the relation r occurred between head h
and tail is trustful. Motifs is an effective approach to measure ties between two
entities [3, 30]. For example, in a social network, two people who have a common
friend are likely to be friends, so this common friend and two people constitute
a triangular connectivity pattern. Intuitively, if two people have more common
friends, the stronger strength of a tie between them can occur under the same
connectivity pattern. This paper will focus on all triangular motifs as shown in
Fig. 1, though our proposed method can be easily extended to other motifs.

Based on the above analysis, we take the input (h, r, t) from G, and quantify
the strength of a tie for triple (h, r, t) by counting the number of motif type
Mi containing this triple. Different type of triangular motifs reflect different
connectivity patterns. Thus, we construct a feature vector mi(h, r, t) to consider
all:

mi(h, r, t) =
∑

h,t∈E,r∈R

1 (h, r, t occur in Mi) (1)

where 1(s) is the truth-value indicator function, i.e., 1(s) = 1 if the statement
s is true and 0 otherwise. We form a feature vector mi(h, r, t) where the i-th
element indicates the number of typeMi motif containing (h, r, t). Given motif
feature vector mi(h, r, t), we use a L-layer multi-layer perceptron (MLP) [42] to
extract a motif-aware trustworthiness value tm (h, r, t)1:

tm(h, r, t) =M(M(· · ·M(mi(h, r, t)))) =ML(mi(h, r, t)), (2)

where M(x) = σ(Wmx + bm) is a fully-connected neural network2 layer with
weight Wm, bias bm, and nonlinear ReLU activation function σ(·). In the output
layer ofML(·), instead of ReLU, we use a sigmoid function (Eq.(3)) to a return
tm(h, r, t) in the range 0 to 1.

δ(tm(h, r, t)) =
1

1 + e−tm(h,r,t)
. (3)

Community-aware Trustworthiness. A well-defined community in graphs
should include nodes that have relatively higher association than nodes in dif-
ferent communities [24]. A pair of nodes are more likely to be connected if both
are in the same community, and less likely to be connected if they do not share
communities [28].

Inspired by the above, we assume that if a head h and a tail t is more likely
to be contained in the same community, the relation from h to t has stronger

1 We use the exponent notation L in Eq. 2 and following equations in the rest of this
paper for simplicity

2 Exploring a more elaborate design of layers is an important direction of future work.
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reliability. We thus perform community detection task on G. We first convert G
to an undirected graph Gu due to focus on the association of triples. We then use
a standard spectral clustering [31] on Gu to conduct communities. The specific
details are described below. Let A ∈ Rn×n be an unweighted adjacency matrix of
Gu where A(h,t) = 1 if (h, r, t) is a fact in G, otherwise A(h,t) = 0. The degree
matrix D is a diagonal matrix with diagonal entries D(i, i) =

∑n
t=1 A(h,t),

which is the degree of the entity h. The random walk matrix of Gu is defined as:

P = D−1A, (4)

which denotes the probability transition matrix of random walks on the Gu. We
then compute the first k largest eigenvectors as input to k-means [14] to conduct
final k communities.

To increase reliability and robustness of community-aware triple trustworthi-
ness, we use different community detection strategies by adjusting the number
of output communities (e.g., output five communities as the first strategy). We
thus form a community indicator vector s: si (h, r, t) = 1 if (h, r, t) in the same
community under i-th strategy and 0 otherwise 0. We finally feed si (h, r, t) to
a MLP to extract a community-aware trustworthiness tc(h,r,t):

tc(h, r, t) = CL(s(h, r, t)), (5)

where C(x) = σ(Wcx + bc).
Global-aware Trustworthiness. We adopt source allocation theory in

PageRank [27] to determine the trustworthiness at the level of global. We assume
that the trustworthiness between entity pairs (h, t) will be higher, and more re-
source is passed from the head h through all paths to the tail t in a whole graph
G. The amount of resource aggregated into t indicates the trustworthiness value
between h and t.

Specifically, starting from h each node in the graph should be reached. In the
initial state, the resource amount of h is 1, and all others is 0. In the process of
resource allocation, the sum of all resources of nodes is always 1. We simulate
resource flowing until distribution steady. The value of the resource on the tail
entity is tg(t | h), it is calculated as follows:

tg(t | h) = (1− α)
∑
ei∈D

tg(ei | h)

d (ei)
+
α

n
, (6)

where D is a set of nodes that have outgoing links to the node t, d(ei) is the out-
degree of the node ei. Thus, for each node ei in D , the resource flows from ei to

t should be
tg(ei|h)
d(ei)

. The nodes without outgoing links can cause the absorption

of the resource. In order to prevent it, resource flow from each node may directly
jump to a random node with the same probability α. This part of the resource
that flows to t randomly is 1

n .
Fusion of Estimators and Refinement. We fuse the above three-level

trustworthiness values tm(h,r,t), tc(h,r,t)and tg(t | h) as a vector and feed it to
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a MLP to extract a final triple trustworthiness as follows:

tf (h, r, t) = FL([tm(h, r, t), tc(h, r, t), tg(t | h)]). (7)

We generate a trustworthiness value for triple (h, r, t), but it cannot be
directly used in knowledge transfer from KG to RS. The reason is that knowledge
representation is in the form of the entity and relation rather than the triple.
We thus need to refine triple trustworthiness tf (h, r, t) to entity te(h)/te(t) and
relation trustworthiness te(r).

The knowledge representation learns entities and relations with distributed
representations based on triples in KGs. Therefore if an entity is likely to involve
in triples with high trustworthiness, the representation of this entity is trustful.
In our method, we consider all triples involving this entity h by sum averaged
the trustworthiness of all triples the h or tail r involves in. It is formulated as
follows:

te(h) =

∑
t′∈E,r′∈R tf (h, r′, t′)

nh
, te(r) =

∑
t′,h′∈E tf (h′, r, t′)

nr
, (8)

where nh and nr are the number of triples entity h and relation r involve in. Note
that entity tail t has the same case with entity head h. In the following modules,
the output trustworthiness te(h) and te(r) will weight the entity h and relation
r representation of KG while incorporating with RS. It instructs our model to
pay more attention to those more convincing triples.

3.2 Recommendation Module.

In recommender systems, there are two common scenarios can be found 1) a
variety of preferences from users exist; 2) different users may share the same
preference to different items (i.e., N-to-N issue). To model the above two sce-
narios, inspired by TransH, a recent work [7] explicitly models user preferences
and regards them as translational relationships (i.e., u + p ≈ i) between users
and items to address the N-to-N issue. However, for a typical preference, all the
user and item share the same mapping matrix. Therefore, it fails to distinguish
attributes between users (e.g., Thomas as a user) and items (Titanic as a movie)
in which both are very different types of objects.

To address this issue, inspired by TransD [16], we define a new score function

g(u, i; p) = ||u⊥ + p− i⊥||2, (9)

where u⊥ = Muu and i⊥ = Mii. We interpret Mu and Mi are two different
mapping matrix for the user u and item i respectively. A lower score of g(u, i; p)
indicates that an item i is recommended to a user u due to a preference p is likely
to be true. we define the different mapping matrix of users (Mu) and items (Mi)
to discriminate attributes between the user u and item i as follows:

Mu = wpup + I, Mi = wpip + I, (10)
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where wp is the preference projection vector, up and ip are user and item pro-
jection vectors, I is a identity matrix.

To model user preferences, we introduce a set of preference latent matrix
P, and a row p′ ∈ P denotes one preference. Correspondingly, we define a
preference projection matrix Wp and one row wp′ ∈ Wp. With the help of
KG, the number of preferences can be automatically set and each preference is
assigned with explanations (Sec 3.4). Given a user and an item, we attempt to
explore the reason from a variety of preferences that this user likes this item.
We design the below preference selection strategy by measuring the similarity
between a user-item pair and a preference:

θ(u, i; p’) =
∑
p′∈P

sim(u + p′, i) (11)

where sim(·) is a measurement of similarity (e.g., inner product). The high
θ(u, i; p) indicates the significance of the preference p for the user u when pur-
chasing the item i. Noting that we design a different preference selection strategy
from [7] due to keep the consistency of definition of translation-based user-item
interaction.

Considering that a user may like an item according to various factors, which
have no distinct boundary. We thus adopt attention mechanism to combine mul-
tiple preferences as follows:

p(u, i; P) =
∑
p′∈P

θ(u, i; p’) · p′. (12)

wp(u, i; Wp) =
∑

wp′∈Wp

θ(u, i; p’) ·wp′ . (13)

For simplicity, we use p and wp to indicate p(u, i; P) and wp(u, i; Wp) in Eq. (9)
and Eq. (10). We encourage that the translation distances of interacted items
are smaller than random ones for each user through BPR Loss function [29]:

Lp =
∑

(u,i)∈Y(u,i′)∈Y′
− log δ [g (u, i′; p′)− g(u, i; p)] (14)

where Y′ contains negative interactions by randomly corrupting an interacted
item to a non-interacted one for each user.

3.3 Knowledge Graph Representation Module

Our TrustRec framework is designed to be sufficiently flexible. Some existing
KGR methods covering from translational-based methods (e.g., TransD [16]),
semantic matching (e.g., DistMult [40]) and deep learning (e.g., SME [5]), can
be combined into TrustRec framework, i.e. without requiring changing the model
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or affecting its computational complexity. Here we take TranD as an example.
The scoring function of trustworthiness-aware TransD is defined as follows:

E(G) =
∑

(h,r,t)∈G

g(h, r, t) · tf (h, r, t), (15)

where g(h, r, t) = ||h⊥ + r− t⊥||2. Differing from conventional methods, we also
introduce the triple trustworthiness tf (h, r, t). A higher triple trustworthiness
implies that the corresponding triple is more credible, and thus should be more
considered. In detail, h⊥ and t⊥ are projected entity vectors by projection matrix
Mrh and Mrh respectively:

h⊥ = Mrhh, t⊥ = Mrtt, (16)

Mrh = rphp + I, Mrt = rptp + I, (17)

where rp ∈ Rp, hp ∈ Hp and tp ∈ Tp are the relation, head and tail projection
vector. Finally, the training of TransH encourages the discrimination between
valid triplets and incorrect ones using margin-based ranking loss:

Lk =
∑

(h,r,t)∈G,(h′,r′,t′)∈G−
[g(h, r, t) + γ − g(h′, r′, t′)]+ · tf (h, r, t), (18)

where [·]+ , max(0, ·), G− contains incorrect triplets constructed by replacing
head entity or tail entity in a valid triple randomly, and γ controls the margin
between positive and negative triples. Noting that the triple trustworthiness
tf (h, r, t) instructs our model to pay more attention on those more convincing
facts.

3.4 Interpretability Module.

In the recommendation module, we explicitly model users’ preferences, but it still
cannot semantically explain based on users’ purchase. To understand the reasons
that a user likes an item, inspired by [7], we transfer the relation presentation
(R) in KG to preference representation (P) in RS. For example, if a user has
watched several movies directed by (relation) the same person (entity), we can
hold that the director relation plays a critical role when the user makes decisions.
Note that we need to consider trustworthiness of relations while transferring to
preferences in RS. If a relation representation is trustful, and it should be more
considered.

We extend our recommendation module by transfer the knowledge of rela-
tion to preference in RS. Specifically, we first define knowledge-enhanced score
function

g(u, i; p) = ||û⊥ + p̂− î⊥||2, (19)

where p̂ is knowledge-enhanced preference. It is generated by producing a sim-
ilarity score γ(u, i; p, r), and select a preference from relation R and preference
P:

γ(u, i; p′, r) = sim(u + p′ + tr(r) · r, i) (20)
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p̂(u, i; P,R) =
∑

p′∈P,r∈R

γ(u, i; p′, r) · (p′ + tr(r) · r). (21)

where tr(r) is the trustworthiness and give a weight to the relation r so that
trustful relation can get more attention while incorporating with the preference
p′ in RS. We define û⊥ and î⊥ as follows:

M̂u = ŵpup + I, M̂i = ŵp îp + I, (22)

ŵp(u, i; Rp,R) =
∑

r∈R,rp∈Rp

γ(u, i; p′, r) · (rp + tr(r) · r). (23)

î⊥p = i + te(h) · h. (24)

In the above equations, te(h) and tr(r) is used to weight the representation of
the head entity and relation while transferring knowledge from the KG to RS.
Higher triple confidence implies that the corresponding triple is more credible,
and thus should be more considered. We train TrustRec using the overall objec-
tive function L = Lp + Lk.

4 Conclusion and Future Work

In this paper, we proposed a TrustRec that can detect and measure possible
noises in knowledge graph representations as trustworthiness while incorporat-
ing with recommender systems. To detect and measure possible noises, we pro-
pose a method to leverage three-level structural information in the KG from a
small to the big picture, namely the motifs, communities and global. The output
trustworthiness is viewed as the weight of knowledge to incorporate with RS. If
the higher trustworthiness of the knowledge is determined, the more knowledge
will be integrated into the RS. Additionally, to distinguish attributes between
users and items in which both are very different types of objects, we develop a
new translation-based RS method to enable the user and item to utilise different
mapping functions. In the future, we will elaborately test the performance of the
whole TrustRec on real-world datasets.
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