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Abstract. Community finding algorithms are complex, stochastic algo-
rithms used to find highly connected groups of individuals in a graph.
As with “black-box” machine learning approaches, these algorithms pro-
vide little explanation or insight into their outputs. In this novel research
paper, inspired by work in explainable artificial intelligence (XAI), we
look to develop post-hoc explanations for community finding algorithms.
Specifically, we aim to identify features that indicate whether a set of
nodes comprises a community or not. We evaluate our model-agnostic
methodology, which selects interpretable features from a longlist of candi-
dates, in the context of three well-known community finding algorithms.
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1 Introduction

Community finding is an important task in network analysis for gaining insight
into the network structure. Networks are normally used to represent relational,
non-Euclidean data. Data points, known as nodes, are connected by edges which
represent relationships between the nodes. Communities are loosely defined as
sets of nodes with high connectivity within the community and sparser connec-
tions to nodes outside of the community [4]. Identifying communities can provide
salient information in many applications, such as public health and computa-
tional social science. However, existing community finding algorithms provide
little insight beyond the identification of the communities themselves. Since
these algorithms are often stochastic, producing potentially different commu-
nity sets across consecutive runs, and also rarely provide reasoning for these
outputs, it remains uncertain as to why the algorithm has identified a certain
set of communities. So far, there has been little work to provide further reasoning
behind community finding algorithm outputs, which might help an end user to
understand the results in a practical context. In particular, community finding
algorithms are often used by domain experts with some experience with network
analysis, so we try to consider explanations that can assist someone who already
has some understanding of complex networks.

In the wider field of machine learning, significant research has been devoted to
improving our understanding of model outputs [19]. Since many machine learn-
ing algorithms act as a “black-box”, providing little explanation after training
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on sometimes millions of parameters, explainability has become imperative to
avoiding hidden biases or incorrect assumptions. Although one approach is to de-
velop inherently “transparent” models (i.e., models where the inner workings are
easily understood), “post-hoc” explanations have also been developed as an al-
ternative where this is not possible [7, 15]. This involves generating explanations
for outputs after the model has already been trained and applied on the data.
One such method is to identify interpretable features which a domain expert can
easily recognise and understand.

In this paper, we propose a model-agnostic methodology for identifying in-
terpretable features which are able to distinguish “real communities” and “fake
communities”. We apply this methodology to three well-known community find-
ing algorithms to generate a short list of interpretable features that can be used
to explain their outputs. We found that the most informative features across all
algorithms were the cut ratio and the internal-external metric, both defined in
section 3. As the number of inter-community edges increase, relative betweenness
becomes increasingly important. We envision that this insight could be incor-
porated into future work on generating visual explanations for the outputs of
community finding algorithms.

2 Background and Related Work

LIME [15] (Local Interpretable Model-Agnostic Explanations) is a well known
method for post-hoc explanations. The model generates these explanations by
perturbing the input data and observing the changes to the output. The relative
importance of features is included in the explanation, showing which features
contributed to the output. In our work, we adopt a similar use of feature impor-
tance to identify the interpretable features which will be of most use in explaining
communities. SP-LIME (Submodular Pick LIME) aims to explain the model as
a whole, rather than individual outputs. The use of interpretable features in a
simpler surrogate model has also been explored by Keane et al. [7], where a
complicated neural network is mapped to a simpler case-based reasoning model.

To the best of our knowledge, there has been little work adapting these
post-hoc explanation approaches to network analysis, and in particular, commu-
nity finding. Some work in explainability of unsupervised machine learning has
aimed to provide insight into clustering algorithms [13, 12], but not networks
or communities. Lanchicinetti et al. [10] compared the performance of commu-
nity finding algorithms by generating networks using their LFR benchmark [8]
with embedded “ground-truth” to identify the best performing algorithms. This
dataset generation algorithm produces synthetic networks designed to mimic the
structure of real-world networks. One hyperparameter, the mixing parameter µ,
is used to determine how well-separated the communities are, as this can vary
in real-world networks. At low values of µ, the communities are well-separated,
with few edges connecting nodes in different communities. At high values of µ,
the communities become harder to identify for the algorithms, as there are more
edges connecting nodes in different communities. In our work, we repeat our
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experiments on networks with different values of µ to see whether the separa-
tion of communities affects which features are best able to distinguish between
communities and sets of nodes which do not comprise a community.

Further work by Lee and Archambault [11] compared the performance of
well-known community finding algorithms to communities labelled by humans.
Their findings were in line with those of Lanchicinetti et al.; the same commu-
nity finding algorithms performed best on both the human-labelled communities
and the LFR benchmark communities. Among these were Infomap [16] and the
Louvain algorithm [1], which we include in our analysis.

While little work has aimed to explain the communities generated by these al-
gorithms, there has been some exploration into using consecutive runs of stochas-
tic algorithms to generate a more “definitive” consensus clustering for a given
network [9]. Other work has explored the consistency of algorithms across several
runs [3, 5]. In this work, we aim at providing interpretable features to explain
community structure, in a manner that is independent of the choice of algorithm.

3 Methodology

In order to identify the interpretable features which can distinguish between real
communities and other sets of nodes, we propose the following methodology.
We perform a set of experiments on different algorithms at different network µ
values (defined in section 2). For each µ value, a large set of synthetic graphs
on which to perform the experiments are generated using the LFR benchmark
method. Then for each experiment, we run the chosen algorithm on the set of
graphs at the correct µ value. For each graph, we perform 1000 runs of the
algorithm, and obtain the set of unique communities found across these 1000
runs. One node may appear in many different communities within this set, as
the community structure may have been identified differently across different
runs of the algorithm. However, each community will appear only once in the
dataset. We then calculate our longlist of features for these communities. This
gives us our set of features for the “real community” labelled data points.

Then, we use a rewiring process to adjust the network structure. The features
are recalculated for each community on the rewired graph, giving us our set of
features for the “fake community” labelled data points. Although the set of
nodes in the community remains the same, the structure of the community has
changed in the rewiring, resulting in new values for the features. However, due
to the one-to-one mapping between the “real community” dataset and the “fake
community” dataset, we have balanced classes for a classification problem.

We therefore train a random forest classifier to distinguish between the “real”
and “fake” community classes using the features we have precalculated. Finally,
we extract permutation importances for each of the input features and perform
a statistical analysis to identify which are the most informative.
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3.1 Graph Generation

Power analysis determined the number of graphs needed at each of the three
µ values (0.2, 0.3 and 0.4) to be 119, which we round up to 120, giving 360 in
total. These are generated using the LFR generator in NetworkX [6], using the
following hyperparameters: numbers of nodes 1000; τ1 and τ2 3 and 2; average
degree 20; max degree 50. These were chosen to match those used in the original
LFR benchmark paper [10].

3.2 Community Detection

The following stochastic algorithms, designed for detecting partitions (i.e., non-
overlapping communities), are used for our experiments: Louvain [1], Infomap
[16], Label Propagation (LPA) [14]. In total, this gives 9 potential experiments
(3 algorithms on 3 µ values). However, we omit LPA on µ = 0.4 since it often
classifies all nodes in the graph as belonging to a single community.

3.3 Calculation of Features

For these experiments, we consider features which are interpretable to domain
experts who have previous experience with network analysis. Thus, these features
may not be interpretable to a layperson, but should be considerably easier for
the expert to understand than the algorithm on its own. We try to consider
the simplest features possible, omitting, for example, modularity in favour of
those which are easier to understand. The longlist of features chosen for our
experiments are as follows:

– Relative Density : For a set of nodes V connected by a set of edges E, the
density of this set is defined as: 2|E|/(|V |(|V | − 1)). Then the relative density
is the density of the community divided by the density of the whole graph.

– Relative Diameter : For a set of nodes V , the diameter is the maximum
distance between any two nodes. Then the relative diameter is the diameter
of the community divided by the diameter of the whole graph.

– Relative Pathlength: For a set of nodes V , the average shortest path length
is defined as:

∑
s,t∈V d(s, t)/(|V |(|V | − 1)) where d(s, t) is the length of the

shortest path from s to t. Then the relative path length is the average shortest
path length of the community divided by the average shortest path length
of the whole graph.

– Relative Degree: For a set of nodes V , the average degree centrality is defined
as:

∑
i∈V deg(i)/(|V |(|V | − 1)) where deg(i) is the number of edges adjacent

to node i. Then the relative degree is the average degree centrality of the
community divided by the average degree centrality of the whole graph.

– Relative Betweenness: Let V be a set of nodes of which i, j and k are mem-
bers. Let σ(j, k) be the number of shortest (j, k) paths, and σ(j, k|i) be the
number of those paths that pass through i. Then the betweenness centrality
of node i is given by:

∑
j,k∈V σ(j, k|i)/σ(j, k) Note that if j = k, σ(j, k) = 1
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and if either j or k = i, then σ(j, k|i) = 0. Then the relative betweenness is
the mean betweenness centrality of the nodes in the community divided by
the mean betweenness centrality of the nodes in the whole graph.

– Relative Closeness: Let V be a set of nodes of which i and j are members,
and let d(i, j) be the length of the shortest path between nodes i and j.
Then the closeness centrality of node i is given by: (|V | − 1)/

∑
j 6=i d(j, i)

Then the relative closeness is the mean closeness centrality of the nodes
in the community divided by the mean closeness centrality of nodes in the
whole graph.

– Cut Ratio: Let wij = 1 if nodes i and j share an edge, and wij = 0 if they
do not. Then we calculate a cut ratio where set A is the set of nodes in the
community, and set B is the set of nodes in the graph not in the community,
as follows: 1/|A||B|

∑
i∈A,j∈B wij

– Internal-External : Let wij = 1 if nodes i and j share an edge, and wij = 0 if
they do not. Then we calculate a measure of internal-external where set A is
the set of nodes in the community, set E is the set of edges in the community,
and set B is the set of nodes in the graph not in the community, as follows:
|E|/(|E|+

∑
i∈A,j∈B wij)

3.4 Graph Rewiring

In order to rewire the graph to calculate the “fake community” features, pairs
of edges are identified randomly and endpoints are swapped. For example, for
edges (i, j) and (a, b), after a swap the edges will be (i, a) and (j, b) with the
original edges removed. A noise level is multiplied by the total number of nodes
in the graph to determine the number of edge swaps. For our experiments, the
noise level is 0.5. A swapping probability of 0.5 represents a balance between a
uniform structure and a random structure in the original discussion of rewiring
by Watts and Strogatz [20].

3.5 Random Forest Classifier

When applying a random forest classifier to distinguish between “real” and
“fake” communities, we first split the data into 80% training data and 20% test
data. We then train the random forest 50 times on the training data, comprised
of 10 repeats of 5-fold cross-validation. A permutation importance is calculated
for each node feature after each of these 50 runs, using the held-out test data.
These 50 values then give a distribution for the importance of that feature.

3.6 Statistical Methodology

Pilot study. In order to determine the suitability of the above methodology, we
ran a pilot study on 20 LFR generated networks at each µ value (60 networks
total). This pilot study was used to determine the behaviour of the underly-
ing phenomena so that we could conduct a proper power analysis. Pilot study
networks are not included in the final analysis.
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Distributions of each permutation importance for all metrics were created and
we ran a Shapiro-Wilk test to determine the normality of the phenomena. As the
majority of the distributions in the pilot study followed a normal distribution
(77%), we took the assumption that the underlying phenomena were normal for
our power analysis.

Statistical methodology. Tests with Bonferroni-Holm corrections are used
in our analysis. The normality of the final permutation importance values on
the main experiment are confirmed using a repeat of the Shapiro-Wilk tests,
and thus t-tests are used to compare the features. Power analysis was conducted
with the following parameters: Cohen’s effect size of 0.3, significance level of 0.05,
and a power of 0.9. We treat each of the three community finding algorithms
independently for analysis and use the pairwise t-tests to identify significantly
different pairs of features.

4 Experiments

In this experiment, we aim to identify which of the features have a significantly
greater importance than the others in predicting whether a set of nodes is a
“real” or “fake” community. Distributions of permutation importance for the
features on each experiment are displayed below in figure 1. These distributions
are constructed using the 50 permutation importance values calculated during
training, as described in section 3.5.

From our experimental results, we see qualitatively that the cut ratio and
internal-external metrics are consistently the most important features in dis-
tinguishing the “real communities” from the “fake communities”. However, as
the µ value increases, there is evidence to suggest that the relative betweenness
may also have some importance. The Bonferroni-Holm corrected t-tests identi-
fied significant differences between these three “important” metrics and all other
metrics in the study with the following exceptions:

– Infomap µ = 0.2: relative betweenness compared with relative diameter
– Louvain µ = 0.2: relative betweenness compared with relative diameter
– LPA µ = 0.2: relative betweenness compared with relative degree and rela-

tive density

The full set of statistical results are available in the supplementary material.

5 Discussion

Infomap, Louvain, and LPA performed similarly in our experiments, with three
metrics being consistently important for distinguishing the real communities
from the fake communities. These metrics were: cut ratio and internal-external
for all experiments, with relative betweenness becoming increasingly important
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(a) Infomap, µ = 0.2 (b) Infomap, µ = 0.3

(c) Infomap, µ = 0.4 (d) Louvain, µ = 0.2

(e) Louvain, µ = 0.3 (f) Louvain, µ = 0.4

(g) LPA, µ = 0.2 (h) LPA, µ = 0.3

Fig. 1: Results of the community feature experiments. Plots are of permutation
importance of the metrics. Mean indicated as a black dot and median as a red
dot. Lines indicate 95% bootstrapped confidence intervals.
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with increasing mixing parameter. Thus, when the communities are more clearly
defined, or when µ has a low value, more agglomerative features are important
for explaining community structure for the set of nodes considered. This finding
is not all that surprising as these metrics are fundamental to the definition of
community structure. However, as µ increases and the communities become less
well defined, divisive features, such as relative betweenness, become of increasing
importance. A possible explanation for this finding is that local connections and
neighbours to the node set can be used to understand the community structure
when there are few cross community edges, but as these edges increase in preva-
lence, more global features, such as relative betweenness, become important in
explaining community structure.

Surprisingly, despite the fact that the community detection algorithms under
consideration involved different objective functions and optimisation strategies,
the features that best explained the resulting community structures were the
same. This provides evidence that explainable network analysis is feasible, in-
dependent of the choice of algorithm. In future work, it would be interesting to
construct such systems to explain found community structures to end users.

6 Conclusion

In this paper, we have presented the methodology and results of an experiment
to determine features that can be used to explain detected community structure
in networks to a domain expert with some understanding of network analysis.
Our experiment tested features which were calculated on sets of nodes that could
form a possible community. We find that cut ratio and the internal-external ratio
are the most informative features when identifying whether a group of nodes is a
community. As the mixing of the communities increases, relative betweenness in-
creases in importance. This finding was consistent across all community finding
algorithms, indicating the potential for using the proposed method to gener-
ate model-agnostic explanations. Moving forward, we would like to perform the
necessary HCI and visualisation work to construct explainable network analysis
systems that help real users with their tasks. In particular, understanding com-
munity structure in social networks is a problem of importance for public health
researchers studying social contagion [18, 2] and planning interventions [17] for
preventing the spread of harmful behaviour.
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