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Abstract. Hidden Markov models (HMMs) belong to the class of double
embedded stochastic models which were originally leveraged for speech
recognition and synthesis. HMMs subsequently became a generic se-
quence model across multiple domains like NLP, bio-informatics and
thermodynamics to name a few. Literature has several heuristic met-
rics to compare two HMMs by factoring in their structure and emission
probability distributions in HMM nodes. However, typical structure-
based metrics overlook the similarity between HMMs having different
structures yet similar behavior and typical behavior-based metrics rely
on the representativeness of the reference sequence used for assessing
the similarity in behavior. Further, little exploration has taken place in
leveraging the recent advancements in deep graph neural networks for
learning effective representations for HMMs. In this paper, we propose
first-of-their-kind deep neural network based approaches based on graph
variational autoencoder and a diffpooling based graph convolutional net-
work to learn embeddings for HMMs and evaluate the validity of the
embeddings based on subsequent clustering and classification tasks.

Keywords: Deep metric learning · Graph Neural Networks· Hidden
Markov Models · Task agnostic embeddings · Graph variational autoen-
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1 Introduction

Hidden markov models are well known for their role as an enabler in different
real word applications, such as in customer relationship, molecular biology, body
posture identification, credit card fraud detection and speech technology. Typi-
cally, the following three standard problems [12] are considered to be of interest
in HMMs: (i) Computing the likelihood of generating a sequence of observations,
(ii) Inferring the most likely sequence of states that might have generated an ob-
servation sequence and, (iii) Computing the parameters of the HMM given an
observation sequence. However an accurate estimation of the distance between
HMMs is important for the performance of several descriptive, predictive and
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prescriptive HMM-based models and hence the problem of learning embeddings
for HMMs in a metric space has become a problem of interest.
Some of the earlier attempts to find a good metric are based on the following:
(i) co-emission probabilities [10], (ii) Monte Carlo approximation for measuring
entropy divergence [3] and the widely used Kullback–Leibler (KL) divergence
[6], (iv) graph matching [13], (v) Bayes probability of error [1], (vi) BP metric
[11], based on stationary cumulative probability distribution function [15] and
(vii) system statistics [8].
Typically, approaches cited above perform well only if models of similar structure
exhibit similar behavior. The structure-based metrics have an inherent lapse of
not accounting for cases where the HMMs have different structures yet similar
behavior. Metrics based on graph-matching will become intractable and imprac-
tical as the number of nodes and edges in the HMM graph increases [9]. Behavior
based metrics are influenced by the representativeness of the reference sequence
used for gauging the similarity or difference between HMMs. Various graph net-
work models in the deep learning literature have been shown to effectively infer
feature representations to encode the key properties of graphs. Adoption of these
models as such for HMMs is infeasible, as HMMs are rich graphs that encode
time varying behavior of datasets. Further, to the best of our knowledge little
exploration has been done in studying the applicability of these recently devel-
oped deep graph neural network models in the context of learning representa-
tions for HMMs. As a first-of-its-kind attempt, we propose a graph variational
autoencoder (GVAE) based task agnostic model and a diffpoolng based graph
convolutional neural network (GCN) model to learn embeddings for HMMs. The
following are the key contributions of this paper:

(i) We propose and evaluate a task-agnostic model using Graph variational
autoencoders and a diffpooling-based GCN model in an attempt to effectively
encode both the structure and behavior of HMMs in the embeddings learnt.

(ii) We apply the learnt embeddings in the context of a representative complete-
linkage and a single-linkage clustering algorithm to showcase their validity.
We have also analyzed the efficacy of the embeddings learnt in the context
of a classification task.

The rest of the paper is organized as follows: Section 2 describes the models and
their architecture we experimented with, to propose the learned metric. Section
3 describes the experimental setup, dataset, packages used and also discusses the
evaluation methods and results with respect to performance metrics. Section 4
has our concluding remarks along with some pointers for further research.

2 Methodology

This section outlines our approach to learn task agnostic embeddings for
HMMs through graph variational autoencoders, and by leveraging a class-aware
representation learning for HMMs using a diffpooling based network.
A hidden markov model [12] is represented as H = (π,A,B, n, C), where π
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represents the prior probability distribution over states; n is the number of
states; A represents the transition matrix; B represents the matrix of emission
distribution parameters where each row is formed by concatenating mean vector
and linearized diagonal co-variance matrix of the corresponding state in H; C
represents either an alphabet of symbols to be emitted or a continuous space of
observations depending upon whether the support of the observation sequence
is continuous or discrete. As we have experimented with audio datasets, we have
assumed that the emission distribution in a state i of H follows a multivariate
normal distribution with the probability density for the observation x of dimen-
sionality d, in state i given by 1

(2π)d/2
|Σi|−1/2 exp

{
− 1

2 (x− µi)Σ−1i (x− µi)T
}

,

where Σi is the diagonal co-variance matrix and µi is the mean vector. The
HMMs considered in this paper are ergodic in which transitions are permitted
from any state to any other state.

2.1 Graph variational Autoencoder based task-agnostic embeddings

Typically, the embeddings learnt through autoencoders are optimized just with
respect to the reconstruction loss and do not have any regularization in the
latent space to encode the generative ability of the HMMs. Further the order in
which the HMM nodes are linearized to construct the feature vector, impacts the
performance of the autoencoders. To address these demerits, we have adapted
the graph encoder model proposed by Kipf and Welling [7] to build a graph
variational autoencoder (GVAE) for H. The proposed GVAE converts H into
a latent lower-dimensional embedding `. The feature vector of a state i in H
(denoted by Bi) has a dimensionality of 2d to accommodate the concatenated
parameters of the emission distribution of the state namely µi and the linearized
form of diagonal σ2

i . The GVAE infers a latent vector `i of dimensionality dr for
each state i in H, such that dr << 2d.
The GVAE uses a GCN for inferring ` = [`1, `2, `3, ......, `n], which is a matrix
of size n× dr. Assuming that, the likelihood of `i is independent of that of the
other states given A and B, we get,

p̂(` | A,B) =

n∏
i=1

p̂ (`i | A,B) (1)

As it is intractable to compute p̂(A,B) by marginalizing over all possible distri-
butions for `, we assume that p̂ (`i | A,B) ∼ N(µ̂i, σ̂

2
i ) for some µ̂i ∈ Rdr and

σ̂2
i ∈ Rdr . Parameters of the GCN are learnt using the stochastic gradient de-

scent to optimize the KL-divergence between the inferred distribution p̂(.) and
the ground truth p(.). The optimization objective is given as ’θ’ in equation 2.

θ = −Ep̂(`|AiB)[log p(A | `) +KL[p̂(` | A,B)‖p(`))]] (2)

p(`) denotes the prior distribution in which each `i is independently sampled
from N(0, 1). Back propagation is used to adjust the parameters of GCN based
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on the error observed in the output layer. To obtain an embedding for H, we
input A and B matrices to the GCN and in the inferred output matrix ’`’, we
treat each row as the embedding of the corresponding state in H. The GCN used
as the encoder model is two layered as shown in Figure 1. The transformation

Fig. 1. GVAE model

performed by the GCN is given by A× δ(ABW (1))×W (2), where W (1) are the
parameters or weights of the GCN in the first layer. W (1) is the shared weight

matrix of L(1) which is shared by the two sub layers L
(2)
1 and L

(2)
2 . L

(2)
1 and L

(2)
2

separately infers µ̂i and σ̂2
i . δ is the Relu activation given by max(ABW (1), 0).

The decoder that generates the state transition matrix Â given the latent pa-
rameters, is modeled using the dot product between the corresponding latent
vectors as given in Figure 1.
The conditional likelihood of Ai(∀i ∈ [1, n]) is assumed to follow a Dirichlet dis-
tribution as in equation 3. The distance between two HMMs can be computed
using the Graph variational autoencoder as outlined in the Algorithm 1.

p (Ai | `i, `) = Dir
(
Ai | softmax

(
Âi

))
(3)

Algorithm 1 Embedding HMMs using Graph variational autoencoder

1: Input: H1, H2.
2: X1 = Graph V AE(A1, B1), X2 = Graph V AE(A2, B2)
3: distance = 0
4: for each vi ∈ H1 do
5: vj = arg min

vk∈H2

euclidean distance(X1(vi), X2(vk))

6: distance + = euclidean distance(X1(vi), X2(vj))
7: end for
8: return distance
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2.2 Hierarchical embedding for HMMs using diffpooling

One of the demerits of the GVAE based approach is that the HMM represen-
tations learnt are flat; It has no innate provision to encode the hierarchical
structures which are typically prevalent in HMMs. The overall behavior exhib-
ited by a HMM may be viewed as the aggregation of local behaviors exhibited
by a set of closely knit clusters of states. The idea proposed by [14] for learn-
ing structural graph representations has been adapted by us to encode both
the hierarchical spectral-structures and behavior exhibited by the spectral-sub-
structures in HMMs as illustrated in Figure 2. The hierarchical view captures
detailed prominent localized features responsible for the overall behavior of a
HMM, as opposed to Autoencoder based approaches that at one stroke pool
the individual node embeddings of a HMM to emit a global embedding, thereby
losing important hierarchical local patterns.
Each layer L(i) in the diffpooling network corresponds to a pair of GNNs

Fig. 2. Learning hierarchical HMM embedding -an illustration

GNN
(i)
M and GNN

(i)
E , having ni−1 input nodes and ni output nodes followed

by a diffpooling sub layer named DP (i). In the layer L(i), ni−1 corresponds to
the number of nodes in the input graph G(i−1) and ni indicates the number of
clusters in the output or nodes in the coarsened graph G(i) at level i.

Each GNN
(i)
M maps nodes in G(i−1) to their degree of association with respect

to each output cluster node in G(i), this mapping is done using the node embed-

dings in G(i−1). GNN
(i)
M outputs the mapping of the node in G(i−1) to a set of

nodes in G(i) in the form of a ni−1 × ni matrix M (i), where each row j in M (i)

corresponds to the strength of the mapping of j to each of the nodes in G(i) as
specified in equation 4.

M (i) = softmax
(

GNN
(i)
M

(
A(i−1), B(i−1)

))
. (4)
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Similarly each of the GNN
(i)
E accepts the adjacency and emission matrices of

G(i−1) and generates the embedding `(i) of each cluster in G(i) as outlined in
equation 5.

`(i) = GNN
(i)
E

(
A(i−1), B(i−1)

)
(5)

For each layer L(i), A(i−1) and B(i−1) correspond to the transition and fea-
ture probability matrices of the HMM respectively. The number of output nodes

in GNN
(i)
M and GNN

(i)
E is a hyper parameter that corresponds to the max-

imum number of clusters to be inferred in L(i). The diffpooling sub-layer in
L(i) takes as inputs the embeddings of the nodes in `(i), the mapping matrix
M (i) and A(i−1) to generate the feature matrix of the coarsened graph G(i) i.e.
(B(i)) and the adjacency matrix of G(i) i.e. (A(i)) of sizes ni × d and ni × ni
respectively. The feature matrix B(i) is computed as the weighted aggregation
of embeddings in `(i), where the weight of an embedding is the strength of asso-

ciation of the node to the output clusters is computed as B(i) = M (i)>`(i). The
strength of the association between pairs of clusters/nodes in G(i) is computed

as A(i) = M (i)>A(i−1)M (i).

If there are m diffpooling layers then the embedding l(m) is considered as
the final embedding of the HMM. The end-to-end training of the diffpooling
network has been done using stochastic gradient descent. The distance between
two HMMs can be computed as the distance between the hierarchical embeddings
of the HMMs obtained by a diffpooling network. The embeddings compared are
the ones emitted from the last diffpooling layer.

3 Experimental setup and Performance evaluation

The dataset used for our experiments is the open source Free Spoken Digi Dataset
(FSDD). The dataset has 2K audio files created by four speakers uttering digits
from 0 to 9. We have used google colab for performing our experiments. The key
libraries used are pytorch, numpy and scipy.
To validate the embeddings generated, we have performed two extrinsic tasks
namely, clustering and classification using the embeddings. For the clustering
task we have experimented using a complete-linkage based agglomerative clus-
tering and a single-linkage based Minimum Spanning Tree (MST) clustering
algorithm [4]. The validity of the clusters is assessed through Cluster Purity
(CP), Normalized Mutual Information (NMI) and Rand Index (RI). Similarly,
classification accuracy is used as the metric for assessing the classification task.
Throughout this section, M1 to M8 denote the metrics as mapped below: (i)
M1: Cross Likelihood based metric [12], (ii) M2: State mapping based struc-
tural metric [13], (iii) M3: Unisequence Likelihood metric [3], (iv) M4: Matrix
Factorization based linear embedding Metric [2] (v) M5: Hybrid metric based on
both structure and behavior [12,13], (vi) M6: Autoencoder based metric [5] (vii)
M7: Graph Autoencoder based metric, and (vii) M8: Diffpooling based metric.

https://github.com/Jakobovski/free-spoken-digit-dataset
https://pytorch.org/
https://numpy.org/
https://www.scipy.org/
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Training Set Size vs. Cluster quality: The objective of this experiment is
to determine the impact of the training set size on the clustering performance.
We trained a set of HMMs each with ten audio files of the same digit, sampled
uniformly at random with replacement from FSDD. Let S be the set of HMMs
trained which has an equal representation of all the digits in [0, 9]. We have
split S into Strain and Stest such that |Strain|: |Stest| = 4 : 1. We trained the
Graph Autoencoder and Diffpooling based models using Strain and tested the
models using the tuples in Stest. From the plots in Figure 3, it can be observed
that the graph autoencoder based embeddings performed better than the au-
toencoder based embeddings and matrix factorization based linear embeddings.
The behavioral baselines perform better than the structural baseline. Further
the M7 and M8 embeddings required lesser number of samples in the training
set to achieve a better accuracy in the complete-linkage clustering as compared
to the MST-based single-linkage clustering. Diffpooling exhibited a robust per-
formance, which is better than the rest of the models. The performance of M7
degrades as the training set size increases as opposed to M8; this is due to fact
that the embeddings learnt by GVAE for different classes are not well-separated
as compared to that of Diffpooling network; Further, as the dataset size grows,
the discriminative ability of the decision boundary learnt also diminishes.

Fig. 3. Training set size vs. Cluster quality

Variance in the number of HMM states vs. Cluster quality: This exper-
iment is designed to assess the ability of the metric to recognize the similarity
between two HMMs having different number of states but similar behavior. As
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shown in Figure 4, compared to the other metrics, the GVAE based metric ex-
hibited a robust performance as the variance in n increases. This asserts that the
embeddings learnt by GVAEs have the ability to recognize structurally different
yet behaviorally similar HMMs.

Fig. 4. Variance in the No. of HMM states vs. Cluster quality

For the classification task, the autoencoder, GVAE and GCN based embed-
dings achieved an accuracy of 0.45, 0.96 and 1.00 respectively for the FSDD
dataset. The performance of diffpooling based GCN model is not surprising as
the representations learnt are label-aware.

4 Conclusion

In this paper we have introduced a novel method for learning embeddings for
HMMs that uses a graph variational autoencoder (GVAE) and a GCN to learn
flat and hierarchical embeddings respectively. The embeddings learnt are effec-
tive even in tasks where the dataset contains structurally dissimilar yet behav-
iorally similar HMMs. This is due to the regularized, behavior-preserving and
generative latent space learnt by these models. While other metrics falter when
used with single-linkage clustering tasks, diffpooling exhibits a robust perfor-
mance irrespective of the clustering algorithm employed. Future research will
include testing the efficacy of these models on non-ergodic HMM variants.
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