
The Effects of Randomness on the Stability of
Node Embeddings?

Tobias Schumacher1,2[0000−0003−3091−5095],
Hinrikus Wolf1,2[0000−0003−4579−3633],
Martin Ritzert1,2[0000−0002−5322−3684],

Florian Lemmerich3[0000−0001−7620−1376],
Martin Grohe2[0000−0002−0292−9142], and

Markus Strohmaier2,4,5[0000−0002−5485−5720]

1 Equal contribution
2 RWTH Aachen University, Aachen, Germany

{tobias.schumacher,markus.strohmaier}@cssh.rwth-aachen.de
{hinrikus,ritzert,grohe}@cs.rwth-aachen.de

3 University of Passau
florian.lemmerich@uni-passau.de

4 GESIS - Leibniz Institute for the Social Sciences
5 Complexity Science Hub Vienna

Abstract. We systematically evaluate the (in-)stability of state-of-the-
art node embedding algorithms due to randomness, i.e., the random vari-
ation of their outcomes given identical algorithms and networks. We ap-
ply five node embeddings algorithms—HOPE, LINE, node2vec, SDNE,
and GraphSAGE—to assess their stability under randomness with re-
spect to their performance in downstream tasks such as node classifi-
cation and link prediction. We observe that while the classification of
individual nodes can differ substantially, the overall accuracy is mostly
unaffected by the geometric instabilities in the underlying embeddings.
In link prediction, we also observe high stability in the overall accuracy
and a higher stability in individual predictions than in node classification.
While our work highlights that the overall performance of downstream
tasks is largely unaffected by randomness in node embeddings, we also
show that individual predictions might be dependent solely on random-
ness in the underlying embeddings. Our work is relevant for researchers
and engineers interested in the effectiveness, reliability, and reproducibil-
ity of node embedding approaches.
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1 Introduction

Many state-of-the-art node embedding algorithms make explicit use of random-
ness in parameter initialization, edge sampling, or through stochastic optimiza-
tion. Thus, the application of the same algorithm with identical parameters on
the exact same graph data can lead to different embeddings.
Recent research [19] has provided an initial assessment of such instabilities, in
particular with respect to the geometry of the embedding spaces. Yet, the im-
pact of these instabilities on the outcomes of downstream tasks such as node
classification and link prediction has not been systematically evaluated.
Research Objective. We investigate the effects of randomness on the stability
of node embeddings. Towards this end, we specifically focus on assessing the
downstream stability of node embeddings, i.e., the stability of outcomes from
tasks such as node classification and link prediction.
Approach. We conduct experiments with five state-of-the-art embedding algo-
rithms on empirical network datasets. For each embedding algorithm, we com-
pute multiple node embeddings with the same parameters on the same networks
but with different random seeds. Specifically, we apply HOPE [12], LINE [17],
node2vec [4], SDNE [20], and GraphSAGE [6]. On the resulting embeddings,
we then perform node classification and link prediction to quantify downstream
stability with respect to these tasks. In that regard, we consider both stability
in overall performance and stability of individual predictions.
Results and Implications. We find that despite substantial geometric in-
stabilities, which have been reported in previous work [19] as well as our own
preliminary experiments, the overall accuracy in node classification and link pre-
diction is almost constant. This indicates a surprising stability in downstream
tasks. At the same time, we show that the actual predicted classes of individ-
ual nodes can—and often do—differ between classifiers trained on embeddings
based on different random seeds. For link prediction, we observe similar trends,
although the stability of the single predictions is much higher than for node
classification. This higher stability is however likely due to a higher overall accu-
racy in the considered scenarios for this task, which leaves less room for different
misclassifications.

Overall, our work contributes towards a more fundamental understanding
of the stability of node embeddings, and thereby opens up ways for more in-
formed deployments and a better understanding of the effects of randomness on
embedding-based predictions.

2 Related Work

Our paper extends a recent study by Wang et al. [19], who conducted their
research independently and in parallel to ours. They provide an initial assessment
of the issue of instability of node embeddings with an emphasis on geometric
stability. Next to finding significant instabilities over most algorithms for both
global and node-based stability, they perform a factor analysis to identify the
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main sources of those instabilities. The factor analysis suggests that the impact of
dataset-dependent features such as size and density, as well as node properties
such as closeness centrality, have higher impact than algorithmic parameters.
They identified a correlation between embedding stability and node classification
accuracy with SVMs. However, they did not investigate to which extent the
accuracy of repeated downstream tasks varies and how far individual predictions
differ in these downstream tasks.

In a set of preliminary experiments (cf. Appendix B), we confirmed the fun-
damental geometric instabilities which Wang et al. [19] have reported. However,
we could not confirm the impact of network size and density as well as node cen-
trality. Our paper complements their work by providing a thorough analysis on
the impact of instability on downstream predictions, i.e., predictions occurring
when combining embeddings with other machine learning algorithms.

Aside from the study by Wang et al. [19], there has not been any additional
previous study on the stability of node embeddings. However, the issue of em-
bedding instability has been thoroughly studied in the context word embeddings,
which has also influenced our work.

The first work to point out instabilities in word embeddings has been con-
ducted by Hellrich and Hahn [7]. They discovered that neighborhoods of words in
the embedding space change significantly even under fixed corpora. These insta-
bilities have been confirmed and further investigated by Antoniak and Minmo [1].
Both studies [7, 1] report significant instabilities of skip-gram-based word em-
bedding methods with respect to local neighborhood similarities. To investigate
which word properties influence stability, Wendlandt et al. [22] and Pierrejean
and Tanguy [13] conducted regression-based factor analyses. They correlated
the stability of a word embedding with semantic features such as a word’s part
of speech, as well as algorithmic parameters such as the dimensionality of the
embedding space. Finally, Leszczynski et al. [10] specifically analyzed the rela-
tionship between geometric stability of word embeddings and the resulting insta-
bilities in downstream tasks. They introduced an Eigenspace instability measure
to quantify geometric instability, and proved that this measure theoretically de-
termines the expected downstream disagreement on linear regression tasks. In
our study, we directly measure the variance of downstream tasks with non-linear
classifiers, such that this instability measure is not applicable.

3 Experimental Framework

Our main set of experiments quantifies the downstream stability of five state-
of-the-art node embedding algorithms. We start with a short description of the
algorithms and datasets and then describe the experiments. The code for our
experiments is published on GitHub.6

We consider the following five node embedding algorithms as representatives
of the spectrum of currently existing approaches. The spectral embedding algo-
rithm HOPE [12] factorizes the Katz similarity matrix. LINE [17] embeds the

6 All code available on https://github.com/SGDE2020/embedding_stability
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local and global neighborhood structures separately and combines the resulting
embeddings. node2vec [4] applies the word embedding algorithm word2vec on
random walks generated from the network. SDNE [20] computes embeddings
based on the encoder-decoder principle. The inductive node embedding algo-
rithm GraphSAGE [6] applies a GNN to compute its embeddings.

We investigate the downstream stability of node embeddings on four graph
datasets, which cover a broad spectrum of commonly used empirical graphs:
the social graph BlogCatalog [23], the citation graph Cora [16], as well as the
datasets Protein [15] and Wikipedia [11]. Statistics for each graph can be found
in Table 1 in Appendix A.1.
Overview of Experiments. To analyze the impact of randomness in node
embeddings on the outcomes of downstream predictions, we computed for each
dataset 30 embeddings with each embedding algorithm, all with the embedding
dimension of 128 and mostly standard parameters. We consider the two most
common downstream tasks, node classification and link prediction. We evaluate
two types of downstream stability, first the stability of performance and second
the stability of single predictions. In stability of performance, we measure the
variance of general performance scores such as micro-F1 of the classification on
a holdout set. To quantify the stability of single predictions, we train (i) mul-
tiple classifiers on the same embedding and (ii) multiple classifiers on multiple
embeddings of the same network produced by the same embedding algorithm.
Differences in the classifications in (i) indicate the stability of the classifica-
tion algorithm itself due to random elements in the classification algorithm,
independent of the embedding. Such random elements naturally occur in most
learning algorithms. Comparing outcomes of classifiers trained on different em-
beddings (ii) provides an indication of the combined stability of the embedding
algorithm and the classifier. Thus, the difference between the outcomes of (i)
and (ii) corresponds to the influence of the instability of the embeddings on the
stability of the classification. To measure differences in the outcome of classifiers,
we use general performance scores (such as micro-F1 of the classification on a
holdout set) as well as the stable core, i.e., the ratio of nodes that are assigned
to the same class in at least 90% of the classifier runs.

Since different machine learning algorithms have very different characteris-
tics, we use multiple classifiers, namely AdaBoost, decision trees, random forests,
and feedforward neural networks. For node classification, we performed a 10-fold
cross-validation with 10 repetitions. For link prediction, we were able to gener-
ate a sufficient amount of training data and thus left out the cross-validation.
More details on the parameterization of both the embedding and classification
algorithms can be found in Appendix A.2.

4 Results

In a set of preliminary experiments (cf. Appendix B), we have found that all
embedding algorithms except HOPE, which yields near-constant embeddings,
display substantial geometric instabilities. These results are in line with results
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Fig. 1: Stability of classification performance of BlogCatalog and Cora.

from Wang et al. [19]. In this section, we present the results from our experiments
on the instability of downstream tasks as described in Section 3. We begin with
the results for node classification and then continue with the stability of link
prediction.

Node Classification. We first analyze the stability of performance in the node
classification task. Due to limited space, we only present and discuss the results
on BlogCatalog and Cora here. Results for the other datasets can be found in
Appendix C. Figure 1 depicts the micro-F1 scores of the predictions. Each box
in the figure aggregates the different micro-F1 scores of the repeated predictions
on the 30 embedding per algorithm and dataset. We observe that the F1 scores
of all classification tasks vary only marginally. Aside from stability, we observe a
strong dependence of the micro-F1 scores on the classification algorithm, but not
so much on the embedding algorithm, except for GraphSAGE which is always
lower in performance.

Next, we investigate the stability of individual node-wise predictions. For
that purpose, we determine the stable core of predictions over multiple classifi-
cation runs, i.e., the ratio of nodes which are classified to have the same labels
in 90% of all predictions. To distinguish between (i) instability originating from
the classifiers and (ii) instability originating from the underlying embeddings,
we compute the stable cores in two distinct settings. For (i), we train each clas-
sifier ten times on a fixed embedding and averaged the sizes of the resulting
stable cores over five embeddings, for (ii), we trained each classifier once on all
30 embeddings. The results are shown in Figure 2 where the stable cores from
(i) are depicted in saturated colors and the stable cores from (ii) are shown in
light colors. Compared to the stability of performance, the picture of stability
in node-wise predictions is more mixed. Our first observation is that since the
embeddings generated by HOPE are almost identical, also the stables cores from
(i) and (ii) are about the same size over all datasets and classifiers. For the re-
maining embedding algorithms, there is no clear trend recognizable. Next to the
embedding algorithm, the choice of classifier seems to have a high impact on
the stability of individual predictions. For AdaBoost, we observe almost stable
predictions under fixed embeddings, while for varying embeddings, stability is
highly dependent on the embedding algorithm. In contrast, the individual pre-
dictions of the decision trees are relatively unstable, in particular under varying
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Fig. 2: Stability in node-wise predictions. We depict the mean stable core of
predictions under varying embeddings in saturated colors, and the mean stable
core of multiple predictions on fixed embeddings in lighter colors.

embeddings. For random forests, we observe that the observed instabilities are
mostly due to the classification algorithm itself. However, the degree of instabil-
ity strongly varies over the datasets. Finally, for neural networks we observe that
the degree of instability varies over both datasets and there is no clear trend on
whether varying classifiers or varying embeddings have a stronger impact on the
stability of individual predictions.

In general, we observe that both the chosen embedding algorithm as well as
the selected classifier have a high influence on the stability of individual pre-
dictions. The impact of classifier and embedding algorithm varies over different
datasets.

Link Prediction. For simplicity, we show the results of our link prediction
experiments only on BlogCatalog, which are depicted in Figure 3. The results
on the other datasets can be found in Appendix C. The first observation is that
in this binary task, the accuracies are naturally much higher than for multi-
class and multi-label node classification. Further, we see low variances in those
accuracies. In terms of the stability of individual link predictions, we also ob-
serve more stable individual predictions than in node classification. AdaBoost is
almost perfect in repeating the task on the same input data, although the ac-
curacy varies between 0.5 and 0.95 depending on the embedding. Decision trees
also achieve highly reproducible predictions for varying embeddings, whereas for
neural networks and in particular random forests there is a stronger dependence
on the embeddings. For LINE and SDNE embeddings, we observe that most pre-
dictions stay the same independently of the underlying embedding, despite their
geometric instability (see [19] and Appendix B). For node2vec and GraphSAGE,
there is, however, a relatively high fluctuation in the predictions that results
from instabilities in the embeddings. For HOPE, we confirm the stability of the
predictions that is to be expected given its almost fully stable embeddings.

As expected, we see a strong dependence between performance and the indi-
vidual predictions, i.e., higher performance in terms of accuracy corresponds to
larger stable cores. Again, we observe a high impact of the embedding algorithm
on the stability of individual predictions.



The Effects of Randomness on the Stability of Node Embeddings 7

AdaBoost Decision Tree Neural Network Random Forest
0.5

0.6

0.7

0.8

0.9

1.0

AU
C

BlogCatalog

HOPE LINE node2vec SDNE GraphSAGE

AdaBoost Decision Tree Neural NetworkRandom Forest
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

St
ab

le
 C

or
e

BlogCatalog

HOPE LINE node2vec SDNE GraphSAGE

Fig. 3: Stability in link prediction on BlogCatalog. Left: Stability of accuracy.
Right: Stability of individual predictions as difference between the mean sta-
ble core over all embeddings (saturated colors) and the mean stable core over
repeatedly trained classifiers on fixed embeddings (lighter colors).

5 Discussion

Next, we discuss our experimental results, including potential explanations, re-
lationship to prior research, implications, and limitations of our work.

Summary of Results. Our results show that the overall classification per-
formance in both node embedding and link prediction is mostly unaffected by
random variations in the embeddings, which were observed in preliminary exper-
iments (cf. Appendix B) and previous work [19]. However, the actual predicted
classes for single nodes vary depending on the embedding that the classifier was
trained on, i.e., due to the randomness in the embeddings, different classifications
are produced. To a lesser extent, this effect was also observed when analyzing
the predictions of individual links.

Potential Explanations for Results. A potential explanation for the sur-
prising stability in the overall classification performance is that classifiers seem
to be able to extract and utilize local structural information from embeddings
even if their global structure changes. This means that even in very different
embeddings, the necessary information for a model that generalizes well is con-
tained in each of those embeddings. Since the classifications of single nodes or
edges are not nearly as stable as the overall performance, we conclude that for
different underlying embeddings, the learning algorithm chooses to focus on dif-
ferent parts of the embedding. On other hand, the fluctuations in individual
predictions fit with the geometric instabilities. Further, when the overall classi-
fication performance is high, there is not much room for variations in individual
predictions, which we especially observed on the easier link prediction task.

Relation to Existing Stability Results. Overall, the results from our work
complement the findings by Wang et al. [19] on embedding instability. In a set of
preliminary experiments, we have confirmed the substantial geometric instabili-
ties which they pointed out in their work. However, we did not observe a strong
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impact on downstream performance, which they have reported in a smaller ex-
periment. Only when considering individual predictions, we observed substantial
instabilities. For link prediction, we observed a relatively high downstream sta-
bility, again contrasting the results by Wang et al. [19].
Implications. In the authors’ opinion, the outcomes of this paper have signif-
icant impact on the research of node embeddings. Since node embeddings vary
just based on their internal random processes, great care must be taken in their
evaluation and, if possible, experiments should be repeated several times in or-
der to estimate and limit the influence of randomness and enable reproducibility
of results. In settings in which unstable predictions are not problematic, for ex-
ample for product recommendations, node embedding algorithms can safely be
applied since the overall predictive performance is not influenced by the geomet-
ric stability. However, reproducibility of algorithms has emerged as a key factor
for building trust in algorithmic decisions, which requires a high stability of pre-
dictions. This is especially important for high-stakes real-world decisions based
on node embeddings. Practitioners should be aware that node embeddings add
another level of uncertainty to individual (e.g., classification) decisions.
Limitations. The stability of the investigated algorithms might be strongly
influenced by their concrete implementations. In that regard, we picked refer-
ence implementations from the respective research papers or—if that was not
possible—established code bases for the different algorithms. However, we cannot
rule out that some (in-)stabilities we observed are a consequence of implemen-
tation details. Since the chosen implementations are widely used, our results are
still highly relevant for researchers and practitioners. In our experiments, we did
not aim for optimal performance, but for a comparable standard setting. Thus,
we did not perform extensive hyperparameter optimization for each individual
task, but relied on default parameters for each algorithm. We expect a slightly
higher stability with optimized hyperparameters due to higher accuracies.

6 Conclusion

In this work, we analyzed the effects of instabilities in node embeddings on the
predictions in downstream tasks. Despite substantial variations in the geometry
of the embedding space, which have been pointed out in previous work [19]
and confirmed in our own preliminary experiments (cf. Appendix B), we found
that the overall performance in the downstream tasks node classification and
link prediction only displays small deviations. However, we found considerable
variations when looking the classifications of single nodes, and, to a smaller
extent, in the prediction of single links.

In the future, we anticipate investigations of stability and robustness of node
embedding algorithms towards an in-depth study of the effects of different em-
bedding sizes and graph modifications such as deletions or additions of nodes
or edges. Furthermore, we see an opportunity for developing measures that will
allow to estimate the potential instability of an embedding without computing
it multiple times.
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A Experimental Setup

A.1 Datasets

We provide some more details on the graphs datasets that were used in our ex-
periments. Note that the Facebook dataset has only been used in our preliminary
experiments on embedding geometry (cf. Appendix B), as it does not provide
any node labels. Statistics for each graph can be found in Table 1.

– BlogCatalog: This graph models the relationships among the users of the
BlogCatalog website. Each user is represented by a node and two nodes are
connected if the respective users are friends. Each user additionally has one
or more labels which correspond to the news category their blog belongs to.

– Cora [16]: In the well-known Cora citation network each scientific paper is
represented by a node, and a directed edge indicates that the outgoing node
cites the target node. Each paper is associated with a category that refers to
its research topic.

– Facebook [14]: The Facebook government dataset models the social network
structure of verified government sites on Facebook. Each site is represented
by a node and nodes are connected by an edge if both sites like each other.

– Protein [15]: This biological network models protein interactions in human
beings. Each node represents a protein and two nodes are connected if the
corresponding proteins interact with each other. Additionally, each node is
associated with one or more labels that represent biological states.

– Wikipedia [11]: This network represents the co-occurrence of words within a
dump of Wikipedia articles. Each word corresponds to a node, and weighted
edges represent the number of times two words occur in the same context.
Additionally, each node has one or more labels that encode its part of speech.

We used the Cora dataset from the KONECT graph repository [8] and Blog-
Catalog from the ASU Social computing repository [23]. The other empirical
datasets were taken from the SNAP graph repository [9].

Table 1: Statistics of empirical graph datasets. We show number of nodes
(—V—) and edges (—E—), density, and number of node labels. MC indicates
multi class, ML multi label problems.

Data Set |V | |E| Density # Labels

BlogCatalog 10,312 333,983 0.00628 39 (ML)
Cora 23,166 91,500 0.00034 10 (MC)
Facebook 7,057 89,455 0.00359 -
Protein 3,890 76,584 0.01012 50 (ML)
Wikipedia 4,777 184,812 0.01620 40 (ML)
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A.2 Implementations and Parameter Settings

To complement Section 3, in the following we give a more detailed overview
on the chosen implementations and parameter settings of the node embedding
algorithms, as well as the experimental setups of the downstream classification
tasks that we used in our experiments.
Node Embedding Algorithms. For every algorithm from Section 3 we use
the reference implementation except for HOPE, for which no reference imple-
mentation was published. Thus we resorted to the HOPE implementation from
the GEM library [3]. We run the algorithms with default parameters from the
given implementations whenever possible and compute embedding vectors of
length d = 128. We adapted SDNE to use only a single intermediate layer and
for larger graphs increased the weight on the reconstruction error and the regu-
larization term, as otherwise SDNE maps all nodes onto the same vector.
Downstream Classification. For both node classification and link predic-
tion, we use AdaBoost, decision trees, random forests, and feedforward neural
networks as downstream classification algorithms. For all classifiers we used the
standard methods with default parameters from scikit-learn (AdaBoost, decision
tree, random forest) and TensorFlow (neural networks). In the case of neural
networks, we use a network with a single hidden layer of width 100 with ReLu
activation and an output layer with softmax or sigmoid activation depending on
the classification type. Deeper and wider networks did not improve performance
which is why we worked with this very simple architecture.

In node classification we predict either the class of a node, e.g., top-level
research category in Cora, or a set of labels of a node, e.g., the news categories
in BlogCatalog. In the latter case of multi label classification, we assume that
we know the number l of labels and thus predict the l most probable labels. This
approach leads to more stable predictions and is common in literature [18].

For the link prediction task, we considered subgraphs of each network where
we removed 10% of the original edges at random while ensuring that the residual
graph is still connected. For each reduced network, we computed 10 embeddings
per algorithm. We then interpreted link prediction as a binary classification task
on the Hadamard product of two embedding vectors. The removed edges are then
the positive examples for the link prediction, and we chose as many non-edges
at random as negative examples for training the classifier.

For the stability of performance, we compute the variance of micro-F1 scores
over one classifier computed on each of the 30 embeddings per graph and embed-
ding algorithm in node classification, and each of the 10 embeddings per graph
and embedding algorithm in link prediction. In both experiments, macro-F1
yields very similar results such that we only report micro-F1.

For the stability of single classifications, we have to separate inherent insta-
bility of the classifiers from the influence of different embeddings. We estimate
the instability of a classifier by running it 10 times on a single embedding, aver-
aged over 5 embeddings. The total variance in individual predictions is computed
on the results of one classifier trained on each of the 30 embeddings using 75%
of the nodes for training and 25% for evaluation.
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B Experiments on Geometric Stability

In this section, we present our preliminary experiments on the geometric sta-
bility of node embeddings. We first give a brief description of the measures for
geometric stability, and then present the results.

B.1 Measures for Geometric Stability

To quantify geometric instability of node embeddings, we use two measures which
have been introduced in related literature on word embeddings, namely aligned
cosine similarity [5] and k-NN Jaccard similarity [1].

The aligned cosine similarity computes the node-wise cosine similarity be-
tween two embeddings after aligning the axes of the corresponding embedding
spaces. To obtain the optimal alignment, we normalize all embedding vectors and
solve the Procrustes problem: Given two embedding matrices Z(1), Z(2)RN×d,
with N denoting the number of nodes in a given network, and d denoting the
embedding dimension, we determine the transformation matrix Q ∈ Rd×d by
solving the minimization problem

Q := argmin
QTQ=I

∥∥∥Z(1)Q− Z(2)
∥∥∥
F
.

The k-NN Jaccard similarity measure compares the local neighborhoods of
nodes between different embeddings. In both embedding spaces, we compute
for a node u the k nearest neighbors with respect to cosine similarity. We then
calculate the Jaccard similarity of the two nearest-neighbor sets of u.

Each of those two measures computes a score for a single node in two embed-
dings. In order to obtain a score for an embedding space to compare different
algorithms, we average over all pairs of embeddings and all nodes.

B.2 Experimental Results

In our experiments on geometric stability, we used the same algorithmic param-
eter settings and datasets that have been introduced in Appendix A. Next to
the overall stability of the embeddings, we also look into the influence of node
centrality, and the influence of network size and density on the stability of node
embeddings.
Geometric Stability. We start our analysis by computing 30 embeddings per
dataset with every algorithm. We then compute node-wise stability measures
averaged over all pairs of embeddings computed per graph and embedding algo-
rithm. Figure 4 shows the distributions of (a) aligned cosine similarity and (b)
k-NN Jaccard similarity over the nodes of each graph.

For the aligned cosine similarity, we observe that GraphSAGE achieves simi-
larities that are generally only slightly above zero and sometimes even negative.
Negative values correspond to angle differences of more than 90 degrees between
two embeddings of the same node. Thus, even after aligning axes, embedding
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(b) Variability of k-NN Jaccard similarity.

Fig. 4: Geometric stability. Each letter-value plot shows the node-wise similarity
values resulting from 30 runs per algorithm and graph. In (a) we use aligned
cosine similarity, in (b) 20-NN Jaccard similarity.

vectors of the same node are mostly close to orthogonal to each other. In con-
trast, HOPE yields near-constant embeddings (not shown) and shows hardly any
instability. The algorithms SDNE, node2vec and LINE achieve aligned cosine
similarities in the interval (0.8, 0.9) with low variances. These values correspond
to angles between 25 and 35 degrees such that corresponding embedding vectors
roughly point in the same direction after aligning the embedding spaces. Thus,
the latter algorithms exhibit a moderate, but significant degree of instability in
their embeddings.

Results for the k-NN Jaccard similarity, as shown in Figure 4(b), gener-
ally confirm these findings. For HOPE, we observe perfectly matching neighbor-
hoods, while for GraphSAGE the neighborhoods are completely disjoint. This
matches our observations for aligned cosine similarity. For the other three algo-
rithms, the resulting similarities seem to be highly dependent on the dataset,
with quite large variances. Generally, node2vec appears most stable among these
algorithms, though only by a slight margin over LINE. SDNE appears to the sig-
nificantly less stable than node2vec and LINE with respect to Jaccard similarity,
with similarity values close to zero on BlogCatalog, Protein and Wikipedia. This
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(a) Node-wise aligned cosine similarity against closeness centrality.
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(b) Node-wise 20-NN Jaccard similarity against closeness centrality.

Fig. 5: Influence of node centrality. The moving averages of the node-wise (a)
aligned cosine similarities and (b) 20-NN Jaccard similarities resulting from 30
embeddings per graph are plotted against each node’s closeness centrality.

contrasts the results with respect to aligned cosine similarity, where SDNE ap-
peared as stable as the other two algorithms.

Influence of Node Centrality. Now, we analyze whether nodes that are cen-
tral in their graph have more stable embeddings. Closeness centrality has been
identified to be one of the top influence factors for stability in the analysis of
Wang et al. [19]. Also, from the definition of node2vec we expect this algorithm,
among others, to produce more stable central node embeddings since central
nodes occur more often in random walks. In Figure 5, for the Cora and Face-
book datasets we plot each node’s closeness centrality against a moving average
with window size 25 of their average node-wise (a) k-NN Jaccard similarity, and
(b) k-NN angle divergence, aggregated over all 30 embeddings per network and
algorithm. First of all, the (in)stability of the extreme cases HOPE and Graph-
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SAGE appears invariant of the centrality of the node, both in (a) and (b). For
SDNE, we observe that stability with respect to k-NN Jaccard similarity appears
to increase with growing closeness centrality. This trend however is not visible
when considering aligned cosine similarity. For LINE and node2vec, there is no
simple trend visible with respect to any of the two measures, their similarity
scores look rather arbitrary. Overall, we see that although closeness centrality is
ranked high in the factor analysis of Wang et al. [19], there are no clear signs
that more central nodes have more stable embeddings.
Influence of Graph Properties. To evaluate the impact of graph properties
on the stability of the embeddings, we generated synthetic graphs with vary-
ing sizes and densities. More precisely, we utilized two network models, namely
Barabasi-Albert networks [2] and Watts-Strogatz [21] networks. For each model,
we generate two sets of networks, in which we either fixed the network’s size at
n = 8000 nodes and varied its density, or fixed the densities at D = 0.01 and var-
ied their size. The results of this analysis can be found in Figure 6, where we plot
the average aligned cosine similarities over all nodes and embeddings per graph
and algorithm against (a) graph size and (b) graph density. Figure 6(a) contains
missing data points that result from terminating the embedding computation
after a maximum of 72 hours per embedding.

Considering the impact of network size, we see that for GraphSAGE, the
already low stability rapidly drops with larger graph size on both synthetic
models, whereas for HOPE, the near-perfect stability seems invariant of graph
size. In between, LINE, SDNE and node2vec show similar stabilities like in our
experiments on empirical graphs, however there is no consistent trend regard-
ing the impact of network size on their stability. This finding contrasts results
from Wang et al. [19], who stated that the stability of DeepWalk and node2vec
primarily depends on the size of the input graphs.

For the dependence on network density plotted in Figure 6(b), we see that
the embedding stability of SDNE and node2vec seems to increase when graphs
get more dense. HOPE is once again consistent in its high stability, whereas
GraphSAGE shows consistently low stability that is unaffected by network size.
Finally, LINE does nor display any clear trend as it diverges between the two
synthetic models.
Summary. Our results indicate clear differences in the geometric stability be-
tween the embedding algorithms, which is also in line with the results by Wang
et al. [19]. HOPE consistently yields near-constant embeddings, whereas Graph-
SAGE was shown to be very volatile. In between, the other algorithms (LINE,
node2vec, and SDNE) exhibit a moderate, but significant degree of instability.
When checking possible influence factors for stability, we found for none of them
a strong and general trend. In particular, we observed that the influence of node
centrality, graph size, and graph density have a rather small to negligible influ-
ence on the stability of node embeddings. This does not match the high ranking
of the node and graph properties in the factor analysis by Wang et al. [19]. In
contrast, stability is dominated by the choice of the embedding algorithm, which
overshadows the aforementioned influences.
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(a) Mean average aligned cosine similarity over varying sizes.
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(b) Mean average aligned cosine similarity over varying densities.

Fig. 6: Influence of graph properties. In (a) synthetic graphs with varying size
at fixed density 0.01 and in (b) synthetic graphs with varying density and 8000
nodes are used to measure the influence of those graph properties on stability.
Each data point represents the average node-wise similarity over all nodes per
graph and all 435 embedding pairs resulting from 30 runs of the corresponding
algorithm.
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C Additional Results on Downstream Stability

In the following we present additional plots from the experiments that we con-
ducted on downstream stability, which we left out due to space limitations in
the main part.

C.1 Node Classification

We first present our results on the node classification task. Figure 7 depicts the
stability of classification performance on all datasets. We observe that over all al-
gorithms and datasets, the resulting accuracies vary only marginally, and higher
variances appear to depend on the datasets rather than embedding techniques.
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Fig. 7: Stability of classification performance. Stability of the micro-F1 score of
the used classification methods is plotted against the used embedding algorithms.
Each box corresponds to the prediction of 30 embeddings with 10 repetitions.



The Effects of Randomness on the Stability of Node Embeddings 19

BlogCatalog Cora Protein Wikipedia
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

St
ab

le
 C

or
e

AdaBoost

BlogCatalog Cora Protein Wikipedia

Neural Network

BlogCatalog Cora Protein Wikipedia
0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

St
ab

le
 C

or
e

Decision Tree

BlogCatalog Cora Protein Wikipedia

Random Forest

HOPE LINE node2vec SDNE GraphSAGE

Fig. 8: Stability in node-wise predictions. This figure shows the stability of the
classifiers as ratios of nodes which are always predicted to be in the same class.
Saturated colors represent the mean stable core of all 30 embeddings and lighter
colors the mean stable core of five randomly sampled embeddings with 10 repe-
titions each.

Our results regarding the stability of single predictions are shown in Figure 7.
The results on Wikipedia are mostly in line with the results that were obtained
on BlogCatalog and Cora and discussed in the main part. For Protein, where
we have already obtained the overall lowest accuracies in node classification, we
observe an overall much lower stability in individual predictions compared to
the other datasets.
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C.2 Link Prediction

We close with the results regarding the stability of link prediction performance
on all datasets, which are shown in Figure 9. We observe that once again, the
performance differences between different embeddings are negligible, except for
neural networks on HOPE embeddings of the Protein network.
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Fig. 9: Stability of link prediction performance. Stability of the link prediction
accuracy in Area Under Curve of the used machine learning algorithms is plotted
against the used embeddings algorithms. Each box corresponds to the prediction
of 10 embeddings with 10 repetitions.


