
Graph Homomorphism Features:
Why Not Sample??

Paul Beaujean, Florian Sikora, and Florian Yger

LAMSADE, CNRS, Université Paris-Dauphine, PSL Research University
first.last@lamsade.dauphine.fr

Abstract. Recent research in the domain of computed graph embed-
dings has shown that graph homomorphism numbers constitute expres-
sive features that are well-suited for machine learning tasks such as graph
classification. In this work-in-progress paper, we attempt to make this
methodology scalable by obtaining additive approximations to graph ho-
momorphism densities via a simple sampling algorithm. We show in ex-
periments that these approximate homomorphism densities perform as
well as homomorphism numbers on standard graph classification datasets.
Moreover, we show that, unlike algorithms that compute homomorphism
numbers, our sampling algorithm is highly scalable to larger graphs.

Keywords: Graph embedding · Graph homomorphism · Graph classi-
fication.

1 Introduction

Graph embeddings are mappings from the set of all graphs to some well-behaved
Euclidean space, which is the setting where most machine learning models op-
erate. Approaches such as geometric deep learning [4] and more generally graph
neural networks [17] attempt to learn these embeddings, but we focus instead on
graph embeddings that are directly computed from the original graph data [10].

One particularly common approach in computed graph embeddings is the
idea of representing graphs through statistics about particular substructures such
as paths, trees, or walks. Graphlet kernels for example utilize the distribution of
small induced subgraphs of size at most 5 to compare graphs [16].

In this work, we consider the notion of graph homomorphism, which can be
seen as a relaxation of the notion of subgraph, that is easier to compute than
induced subgraphs while being provably expressive. Statistics collected on these
graph homomorphisms are then used as features to traditional machine learning
models operating on Euclidean data. Novel ideas in computed embeddings have
often led to advances in learned embeddings, see e.g. the Graph Substructure
Network [3], and we are hopeful that graph homomorphisms may become a basis
for new learned embeddings as well.

? Supported by Agence Nationale de la Recherche (ANR), projects STAP (ANR-17-
CE23-0021) and ESIGMA (ANR-17-CE23-0010). F. Yger acknowledges the support
of the ANR as part of the “Investissements d’avenir” program (ANR-19-P3IA-0001,
PRAIRIE 3IA Institute).

2 P. Beaujean et al.

2 Graph homomorphism numbers

We will often consider a target simple undirected graph G = (V,E) with n nodes
and m edges from which we would like to obtain homomorphism information
relative to some, usually smaller, pattern graph F with k nodes and l edges.

A graph morphism from F to G is a mapping from the node set V (F)
to V (G). Graph homomorphisms are morphisms that preserve adjacency, i.e.
uv ∈ E(F) implies that f(u)f(v) ∈ E(G), see e.g. Figure 1. If a graph homo-
morphism is bijective then it also preserves non-adjacency and we call it a graph
isomorphism. We write G1

∼= G2 when there exists an isomorphism between
these two graphs.

A

B

C

D

E

F

1

2

3

4
A

B

C

D

E

F

1

2

3

4

Fig. 1. Left: an homomorphism from a 4-cycle to a graph. Right: an homomorphism
from a 4-path to a graph.

To see that a graph homomorphism from F to G is not the same notion as
the fact that F is a subgraph of G notice that an homomorphism from a path
graph on 4 nodes to G may represent a walk of size 4 in G and not only a path
subgraph as can be seen in the right part of Figure 1.

The number of graph homomorphisms from F to G is written hom(F,G)
and ranges from 0 to nk. It is convenient to combine multiple homomorphism
numbers into a vector as follows: homF (G) = (hom(F,G))F∈F . A celebrated
result by Lovász [12] states the following:

Theorem 1. Given two undirected simple graphs G1 and G2, both with n nodes.
Denoting by Gn the set of all simple graphs with at most n nodes, we have:

G1
∼= G2 ⇐⇒ homGn(G1) = homGn(G2).

In particular this means that as long as two graphs have different homomorphism
numbers for a single pattern F then they are not isomorphic to each other.
Extensions of this result have been obtained by Lovász [13] and show that graphs
that have close homomorphism vectors are similar in the sense that they have
cuts of similar value.

NT & Maehara have proposed to use homomorphism numbers as features
to machine learning models, hoping that the first few components of the homo-
morphism vectors would suffice in practice to classify real-life graphs [15]. Their

Graph Homomorphism Features: Why Not Sample? 3

approach was successful but remains limited in practice by the computational
complexity of computing homomorphism numbers.

Indeed, the current best algorithm to compute hom(F,G) is an algorithm
based on dynamic programming and tree decompositions given by Dı́az et al. [8].
Its worst-case running time is O(poly(k)·ntw(F)+1) where tw(F) is the treewidth
of the pattern graph F . Hardness results in computational complexity show that
there is no hope in finding a better algorithm, even if we settle for an approximate
number that would be within (1± ε) of hom(F,G) [7, 5].

3 Graph homomorphism densities

Homomorphism densities are normalized versions of homomorphism numbers.
Formally, t(F,G) = hom(F,G)/nk, which means that densities live in the [0, 1]
interval. These quantities carry most of the properties of homomorphism num-
bers and constitute the basis of the theory of graph limits developed by Lovász [13].
More concretely, the homomorphism density from F to G can be interpreted as
the probability that a random morphism preserve adjacency for every edge of
E(F) into E(G).

This simple scaling allows us to use sampling to estimate t(F,G) in the same
manner as a coin of unknown bias, i.e. a Bernoulli distribution with unknown
parameter p. Standard Chernoff bound arguments give conservative estimates
to the number of morphisms that need to be drawn uniformly at random from
V (F)→ V (G) to obtain an additive approximation within ±ε of t(F,G).

Algorithm 1 starts with drawing N morphisms uniformly at random, which
is equivalent to drawing k nodes in G at random as they are the images of the k
nodes of F and then checking for each edge uv ∈ E(F) if their image is indeed in
E(G). The first set membership query that fails will short-circuit the condition
as the morphism is not going to be an homomorphism. The total running time of
Algorithm 1 is O ((k log n+ l) ·N) where O(N ·k log n) corresponds to sampling
N morphisms and O(N · l) corresponds to testing whether each morphism is an
homomorphism. This leads to a running time of O

(
(k log n+ l) · ε−2 log δ−1

)
to

obtain a value that is guaranteed to be t(F,G)± ε with probability 1− δ.

Algorithm 1 sGHD: Sample Graph Homomorphism Density

Require: G an undirected graph on n nodes, F a pattern graph on k nodes and l
edges, ε > 0 the requested additive precision, 1− δ ∈ (0, 1) the desired confidence.

Ensure: t̄ such that P(|t̄− t(F,G)| > ε) ≤ δ
1: N ← O(ε−2 log δ−1)
2: for i = 1 to N do
3: f (i) ∼ (U([1 . . n])[k]
4: end for
5: t̄← 1

N

∑N
i=1

∏
uv∈E(F) 1

[
f
(i)
u f

(i)
v ∈ E(G)

]
6: return t̄

4 P. Beaujean et al.

The existence of this algorithm does not contradict the hardness results pre-
sented in the previous section. Indeed, if we assume that there is a single Kk in
G then t(Kk, G) = 1/nk. A fixed precision of ε would not be able to distinguish
between t(Kk, G) = 1/nk and t(Kk, G) = 0. To put it simply, a fixed additive
approximation would give accurate values for high t(F,G) and inaccurate esti-
mates for very low t(F,G). However we will see in the next section that this
theoretical behavior has a moderate impact on classification accuracy.

For more details on the scalability of Algorithm 1 and details on its imple-
mentation using adequate data structures, we invite the reader to refer to our
workshop paper [1].

4 Graph classification using homomorphism features

We compare the performance of different homomorphism features on standard
graph classification datasets from the TUDataset collection [14]. We note that
these standard datasets mostly contain small graphs. The datasets containing the
largest graphs still contain graphs with an average of a few hundred nodes. On the
other hand, as Algorithm 1 has logarithmic complexity in the size of G, we would
ideally use it on classification datasets containing very large graphs. However,
to the best of our knowledge, there is no graph classification dataset which
contains very large graphs. For example, the recently introduced Open Graph
Database [11] offers a graph classification dataset of 3.8M graphs containing 14.5
nodes on average. Noting the scalability issues of exact homomorphism number
algorithms like those used by NT & Maehara, we settle for well-studied datasets.

In Table 1 we collect test accuracy scores of a common cross-validation pro-
cedure [9]. SGHD models are vanilla logistic regressions trained on approximate
homomorphism densities obtained by Algorithm 1 by choosing a set of pattern
graphs A10 that corresponds to the first 10 connected simple graphs. SGHD
models are trained on features computed from the same pattern graphs but
to complement graphs instead.1 To analyze the impact of topological informa-
tion, we remove all weights and labels to obtain completely unlabeled undirected
graphs. GHC models are SVM models trained on exact homomorphism numbers
obtained by the algorithm of Dı́az et al. [8]. GHC models also come with a va-
riety of scaling algorithms in the data ingestion pipeline while SGHD do not.
Because of scalability issues, GHC models are given homomorphism numbers
from specific classes of graphs of low treewidth such as trees for the T13 model
collecting homomorphism numbers from the first 13 trees, and cycles for C7. Note
that Algorithm 1 is not bound by these limitations even if its complexity, like in
the case of homomorphism numbers, favors small pattern graphs.

We notice that on most datasets, the performance of SGHD models is on
par with exact homomorphism numbers. On some datasets there is a notable

1 Standard datasets contain relatively sparse graphs which means that the correspond-
ing complement graphs are dense. Dense graphs have larger homomorphism densities
which are easier to detect at fixed precision and more amenable for training machine
learning models.

Graph Homomorphism Features: Why Not Sample? 5

MUTAG NCI1 PROTEINS DD ENZYMES REDDIT-B COLLAB IMDB-B

SGHD-A10 ε = 0.1 83.6± 8.7 62.6± 2.9 72.0± 4.1 76.2± 3.2 21.2± 4.1 73.6± 3.2 68.1± 2.0 63.3± 3.7
SGHD-A10 ε = 0.01 86.3± 7.9 62.7± 3.1 72.3± 3.6 76.1± 3.2 26.3± 4.5 73.8± 3.2 67.7± 2.1 68.7± 2.4

SGHD-A10 ε = 0.1 83.8± 8.5 62.9± 2.9 72.1± 3.8 76.2± 3.4 23.3± 4.5 75.5± 2.7 67.3± 2.2 62.2± 3.5

GHC-T13 (NT&M.) 88.2± 7.4 65.4± 2.5 70.6± 4.7 75.3± 3.6 21.7± 3.6 84.6± 2.3∗ 62.1± 1.9 69.7± 4.4
GHC-C7 (NT&M.) - - - 76.1± 3.9 29.5± 3.2 - - -

Table 1. Test accuracy scores. “-”: experiment not provided in the corresponding
study. *: details of experiment in Section 4

loss of accuracy depending on the precision requested e.g. in the case of IMDB-
BINARY where a lower ε is required to reach higher test accuracy. In some
other cases, SGHD models beat GHC ones such as COLLAB or achieve similar
performance like DD. We focus our attention on the case of REDDIT-BINARY
where there is a massive difference in test accuracy between SGHD and GHC.
When looking closely at the supplementary material of the study by NT & Mae-
hara [15], we notice that depending on the cross-validated scaler, test accuracy
is 73.8% ± 2.8% with min/max or max/abs scaling while it’s over 80% with
other scaling techniques (standard, quantile, power). This shows that further
preprocessing or models with higher capacity may extract more information
than logistic regression or SVM models. We invite the reader to refer to our
technical report for more details and comparisons to different machine learning
models [2]. We conjecture that the cases where SGHD models beat GHC happen
when approximate features operate as a regularizer which retaining most of the
discriminating power of their exact counterparts. When the opposite happens,
we suppose that information loss is responsible for most of the loss in accuracy.

5 Conclusion

We have proposed and implemented a simple randomized algorithm outputting
an additive approximation of graph homomorphism densities. Our sampling al-
gorithm is highly scalable and has a practically constant running time for a given
fixed precision. This has to be contrasted with the theoretical and practical as-
pects of computing exact homomorphism numbers which rely on low treewidth
pattern graphs and even then do not scale to large graphs.

We have shown in experiments on standard graph classification datasets that
additively approximate homomorphism densities retain similar representational
power compared to exact homomorphism numbers and sometimes to higher test
accuracy even when they are used to train logistic regression models which are
one of the simplest classifiers in the literature.

These preliminary results invite us to consider seeking larger datasets con-
taining larger graphs to evaluate the performance of homomorphism densities
in the setting that they were designed to excel. However, it remains to be seen
how to train existing graph machine learning models on datasets of this scale.
Another idea would be to consider learning the family of pattern graphs that
best explains the information present in a given dataset.

6 P. Beaujean et al.

Finally, we wish to compare the performance of models trained on homomor-
phism densities with alternative approaches such as the closely related graphlet
kernels [6, 16] or popular graph neural network architectures [17]. Moreover, we
are interested in studying weighted and/or labeled variants of homomorphisms
which would allow us to extract richer information from graph datasets.

References

1. Beaujean, P., Sikora, F., Yger, F.: Scaling up graph homomor-
phism features with efficient data structures. In: ICLR 2021 Work-
shop on Geometrical and Topological Representation Learning (2021),
https://openreview.net/forum?id=EwT8NpZIth8

2. Beaujean, P., Sikora, F., Yger, F.: Scaling up graph homomor-
phism for classification via sampling. CoRR abs/2104.04040 (2021),
https://arxiv.org/abs/2104.04040

3. Bouritsas, G., Frasca, F., Zafeiriou, S., Bronstein, M.M.: Improving graph neural
network expressivity via subgraph isomorphism counting. CoRR abs/2006.09252
(2020), https://arxiv.org/abs/2006.09252

4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine
(2017)

5. Bulatov, A., Živný, S.: Approximate counting CSP seen from the other
side. ACM Transactions on Computation Theory 12, 1–19 (05 2020).
https://doi.org/10.1145/3389390

6. Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting
small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing. pp. 210–223 (2017)

7. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from
the other side. Theoretical Computer Science 329(1-3), 315–323 (2004)

8. Dı́az, J., Serna, M., Thilikos, D.M.: Counting H-colorings of partial k-trees. Theor.
Comput. Sci. (2002)

9. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural
networks for graph classification. In: ICLR (2019)

10. Grohe, M.: word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector
embeddings of structured data. In: PODS (2020)

11. Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., Leskovec, J.: OGB-LSC: a large-
scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430
(2021)

12. Lovász, L.: Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica (1967)

13. Lovász, L.: Large networks and graph limits. American Mathematical Soc. (2012)
14. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:

TUDataset: A collection of benchmark datasets for learning with graphs. In:
ICML Workshop on Graph Representation Learning and Beyond (GRL+) (2020),
www.graphlearning.io

15. NT, H., Maehara, T.: Graph homomorphism convolution. In: ICML (2020)
16. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-

cient graphlet kernels for large graph comparison. In: AIStat (2009)
17. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive

survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. (2020)

