
Towards Mining Generalized Patterns From RDF Data
And A Domain Ontology

Tomas Martin1, Victor Fuentes1,2, Petko Valtchev1, Abdoulaye Baniré Diallo1,2, René
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Abstract. Nowadays, linked data (LD) are ubiquitous and mining them for knowl-
edge, e.g. frequent patterns, needs not be argued for.
A domain ontology (DO) on top of a LD dataset enables the discovery of ab-
stract patterns, a.k.a. generalized, capturing –rather than identical sub-structures–
conceptual regularities in data. Yet with the resulting ontologically-generalized
graph patterns (OGP), a miner faces the combined challenges of graph topology
and a label hierarchy, which amplifies well-known difficulties with graphs such
as support counting or non redundant pattern listing. As OGP mining is yet to be
addressed in its generality, we propose a formalization and study two workaround
methods that avoid tackling it head-on, i.e. deal with each aspect separately. Both
perform pure graph mining with adapted label sets: gSpan-OF merely strips la-
bels of hierarchical structure while Tax-ON first mines frequent graph topologies
with only root classes as labels, then successively refines labels on each topology.
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1 Introduction

Linked data (LD) are nowadays produced and published in ever increased numbers,
hence mining them for knowledge about the underlying domain has been recognized
as an important research topic [19]. As a special case of such knowledge, structural
patterns, either frequent [3] or rare [21], represent important (a)typical trends and regu-
larities that might, for instance, reflect previously unknown phenomena or provide the
explanation for observed behaviours.

The advantage of LD is they often come with, or might be fitted a posteriori to, a do-
main ontology (DO) [9] which is a prime source of descriptive domain knowledge [15].
A DO, through its class hierarchy, makes possible the discovery of more abstract pat-
terns, a.k.a. generalized patterns (GP) [20] in the data mining (DM) field. GP refer to
abstractions in places where data records refer to individual objects, or items. In this
way, they go beyond the detection of identical sub-records (as in plain patterns) to cap-
ture the shared conceptual structure. GP are agnostic to data record topology, e.g. graph,
sequence or flat set of items). We tackle pattern mining with a DO in a precision farm-
ing [6] context: DOs, typically designed in OWL, have gained significant popularity in
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life sciences [8], in particular, in agriculture. In a project revolving around dairy pro-
duction optimization [11], we are looking after interpretable patterns [16] that might
help compare and contrast populations of dairy cows and entire herds within the Cana-
dian dairy livestock. To that end, we designed a DO [10] in OWL. In these settings,
the resulting ontologically-generalized graph patterns (OGP), as we named them, are
labelled multi-digraphs with vertex/edge labels being DO classes/properties.

An OGP miner faces significant challenges due to interplay between graph topology
and hierarchy on labels, e.g. in typical pattern mining concerns like support counting
and non redundant traversal of the pattern space. Since the OGP mining problem has
yet to be addressed in its generality, we propose here a formalization thereof. Then, as a
means to assess the need for a dedicated OGP miner, we study two workaround methods
that avoid tackling the problem head-on. Instead, our methods deal with a single facet
of the problem at a time. Both perform pure graph mining using gSpan [22], a reference
graph miner, with adapted ontological label sets: gSpan-OF merely strips DO classes
of their hierarchical structure while Tax-ON uses the most generic classes to discover
frequent graph topologies then puts each through a sequence of label specializations.

When assessing these methods on a sample of our dairy control data, we observed
that both incur high computational costs due to the combinatorial nature of the underly-
ing pattern spaces. We see this as an argument in favour of a more subtle approach that
mixes topology extensions with label refinements within a unique mining step.

The remainder of the paper is structured as follows: Section 2 summarizes re-
lated prior work. Next, section 3 states the OGP mining problem and describes both
workarounds. Then, section 4 reports on their respective performances and observed
limitations. Finally, section 5 concludes the paper.

2 Related work

Graphs are among the most difficult data structures to mine as basic operations in-
volved are akin to the costly (sub-)graph isomorphism. gSpan [22] is arguably the ref-
erence method: To mine collections of undirected labelled graphs, it moves down a
spanning tree of the pattern space each time extending a parent with a new edge. It
exploits a canonical form, the depth-first-search (DFS) encoding, to prune redundant
tree branches, which may require extensive graph comparisons. gSpan is the basis for a
number of RDF graph miners. Gaston [18] is another popular graph pattern miner.

Taxonomies have been used as a source of domain knowledge in DM from its on-
set [4] thus leading to the generalized patterns (GP) where categories from a domain
taxonomy replace some of the individual items, e.g in sequential pattern mining [3].
Our own brand of patterns arise from labelled (multi-)graphs, i.e. named RDF graphs,
as data records. Moreover, pattern nodes are labelled by OWL classes and edges by
OWL properties at various abstraction levels (see definitions in section 3).

The generalized graph pattern mining was introduced in [12] which proposes adapt-
ing AGM [13] to vertex/edge label taxonomies. While the intended pattern generaliz-
ing/specializing operator(s) is unclear, by paper’s admission, vertex taxonomies alone
make the task way more challenging and, without effective pruning strategies, the out-
put grows prohibitively large. In [1, 2], a framework for mining ontology-based pat-
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terns from click-streams is presented: Their xPMiner method outputs sequences of
ontology classes linked by object properties. While patterns are basically graphs of
classes/properties, they have handy sequence backbones simplifying both pattern space
traversal and support computing w.r.t. to our unrestricted settings. In [5], a Gaston-
based method is proposed for mining abstract graph patterns from RDF. They proceed
as follows: In the pre-processing step, the RDF graphs are transformed by replacing in-
dividual resource nodes by one of its abstract types from the ontology. However, since
no generalization step is included, the method is unable to discover patterns involving
classes on different abstraction levels than those explicitly assigned as vertex labels.

Taxogram [7] is arguably the first method to mine frequent generalized graph pat-
terns (over a mere vertex label taxonomy, though). At step one, it runs gSpan [22] to
discover all pattern topologies using the most general concept label for every vertex in
data graphs. Then, each of the resulting most general patterns is gradually specialized:
The method goes down the taxonomy for every vertex up till reaching an infrequent
specialization. Since no order is assumed on vertices, duplicate patterns might be gen-
erated, hence the need for (expensive) isomorphism checks.

GP-Close [14] mines GP from RDF datasets with a schema: It splits graphs into
triples and mines those as mere transactions of triple-shaped items. Yet resulting GPs
might not constitute connected graphs. Later on, [23] adapted gSpan to RDF with a
DO, yet with no label refinement step. Recently, the extraction of ontology-based path-
shaped frequent patterns, i.e. sequences, was studied in [17]. Their method focuses on
scalability issues related to blending graph combinatorics and DO hierarchy traversals.

3 Ontology-based graph pattern mining

Below, we state the problem and present two simple mining methods. In that, we use our
dairy cattle performance ontology (DCPO) [10]: An excerpt thereof is given in Figure 1.

3.1 Problem statement

A pattern mining task [3] is defined by two languages (data records and patterns) and a
quality criterion. Let Ω = 〈 O, C, R, ≤C, ≤R, ∈C, ρ〉 be an ontology where O, C and R
are its sets of objects, classes, and object properties, respectively. Both classes and prop-
erties are organized into hierarchies HC = 〈C,≤C〉 and HR = 〈R,≤R〉 with ≤C denoting
the rdfs:subClassOf relation and ≤R the rdfs:subPropertyOf one. The instantiation
relation ∈C⊆O×C is the translation of rdf:type. The incidence relation ρ ⊆C×R×C
is made of triples c1× r× c2 denoting a property r between classes c1 (domain) and c2
(range). Observe that, from RDF/OWL point of view, we admit only object properties:
Data ones are assumed encoded, prior to the analysis, into a suitable class hierarchy
where classes model value ranges. For instance, in Figure 1, HerdLeaveReason and sub-
classes translate a data property whereby leaf classes model original values and the
remainder expert-provided abstractions.

Our data language Ld is akin to RDF named graphs: A graph data record gd ∈
Ld (see Figure 2 on the bottom) represents a doubly-labelled directed multi-graph.
Formally, it is a tuple gd = 〈Vd ,Ed ,λo,λr〉 where Vd is a set of vertices, Ed is a bag
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Fig. 1: Excerpt of our DCPO [10].

of pairs of vertices and λo, λr are two labelling functions based on Ω . Moreover, λo :
Vd → O maps each vertex to an object while λr : Ed → R maps an edge to a property.
Intuitively, a pair of adjacent vertices in gd exists iff the corresponding RDF triple exists
in the triple store. Next, a pattern gp ∈Lp is also a doubly-labelled directed multi-graph
gp = 〈Vp,Ep,λc,λr〉. λc : Vp → C sends vertices into ontology classes while λr works
the same way as above. We call such patterns ontologically-generalized graphs patterns
(OGP), yet the term will only be used whenever ambiguity can arise.

Figure 2 shows an OGP and a matching data graph (labels from Figure 1). Albeit
of similar composition, Lp is not easily mapped to RDFS. It is rather akin to an RDF
format where resources are exemplars of the corresponding DO entities.

Next, a relation aΩ ⊆Ld×Lp reflects the fact that a data graph gd = 〈Vd ,Ed ,λo,λr〉
matches a pattern gp = 〈Vp,Ep,λc,λr〉. Formally speaking, it is akin to a sub-graph
isomorphism extended by is-a links. Thus, we note gd aΩ gp whenever an injective
graph morphism µ : gp → gd exists s.t. ∀vp ∈ Vp, λo(µ(vp)) ∈C λc(vp) and ∀ep ∈ Ep,
λr(µ(ep))≤R λr(ep). As an example, in Figure 2, consider the µ mapping (dashed line)
of the edge labelled &hasLactation4 (top) to hasFirstLactation (bottom). In DCPO,
there is a rdfs:subPropertyOf link between both. Similarly, &InvoluntaryCulling refers
to a super-class of MastitisOrHighSCC, the most specific type of Mastitis 1.

In a similar way, we define the generality between two patterns, vΩ ⊆Lp×Lp,
i.e. via a subgraph isomorphism extended by subclass links from the ontology (the
major difference w.r.t. aΩ is rdf:type is replaced by rdfs:subClassOf∗). Thus, we
note gp vΩ g′p whenever an injective graph morphism η : g′p→ gp exists s.t. ∀v′p ∈V ′p,
λc(η(vp))≤C λc(v′p) and ∀e′p ∈ E ′p, λr(η(ep))≤R λr(e′p). A proper illustration of η is
not in our figures: The pattern in Figure 2 trivially generalizes the one in Figure 3 as

4 Pattern labels in Lp will be prefixed by & to differentiate them from ontology entities.
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Fig. 2: Sample pattern (top), supporting data graph (bottom) and some µ-mappings.
Labels are provided within the ovals for vertices and next to the line segment for edges.

a subgraph thereof. For a non trivial example one could replace &InvoluntaryCulling
in Figure 3 by &HealthMetabolic. vΩ , induces a hierarchy on Lp, 〈Lp,vΩ 〉. OGP
miners have to traverse it while using an interestingness criterion, e.g. support.

Fig. 3: An interesting pattern too far down the pattern space (σ = 138, |D|= 7425).

3.2 An OGP from the dairy dataset

The pattern in Figure 3 –found via a SPARQL query and deemed useful by our experts–
reflects the fact that 138 cows culled for reasons beyond farmer’s control (Involuntary
class) had prior health issues. Thus, for at least two lactations, they recorded a period
of acceptable somatic cell levels followed by another one with more worrisome val-
ues. Such scenarios are plausible as higher scores are major signals for mastitis (udder
inflammation). Consequently, recurrent health issues late in the lactation period could
very well be the trigger for the involuntary culling and hence deserve closer monitoring.
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Noteworthily, OGPs capture shared structure in data plain patterns would miss as
the matching elements in data graphs might differ. For instance, the cows whose graphs
match our OGP might have been culled for a variety of reasons, e.g. udder breakdown.
Yet by referring to the common Involuntary class, the OGP helps factor out higher-
order commonalities only available through the DO. This effect of label hierarchy,
known from GP, spreads over edge labels also in our DO-based settings. Computa-
tionally, though, the OGP proved hardly reachable since located 32-deep within Lp.

3.3 Two workaround approaches

As a first approach, we designed two workaround solutions that avoid mixing concept
hierarchy- and graph topology-related aspects during 〈Lp,vΩ 〉 traversal. Here, both
methods produce F Ω , the set of all frequent OGPs. The goal was to assess the alter-
natives to a fully-blown OGP miner going down 〈Lp,vΩ 〉 while using a yet-to-define
canonical form and a dedicated refinement operator (e.g. as in [2]).

First, gSpan-OF (for gSpan with Ontology Flattened), runs gSpan with a flat set
of ontological labels, i.e. ignoring the relations ≤C and ≤R at pattern generation time.
Only during support check for a pattern (aΩ ), do ≤C, ≤R, and ∈C interfere in mining.
Precisely speaking, the traversal follows a subset of vΩ corresponding to pure sub-
graph isomorphism, thus ignoring links in 〈Lp,vΩ 〉 representing label specializations.
gSpan-OF benefits from gSpan’s parsimonious traversal: Its canonical form checks help
avoid duplicate generations. An overview of gSpan-OF is provided by Algorithm 1.

Algorithm 1: gSpan-OF
Input: Ontology Ω , graph database D, minimal support threshold ς

Output: Set of frequent OGPs F Ω

1 Mine frequent triples t ∈C×R×C into F Ω
1 , the set of frequent single-edge OGPs

2 Apply gSpan to discover all frequent OGPs, recursively extending OGPs in F Ω
1

3 Extend a frequent OGPs gp using a frequent t ∈F Ω
1 to produce gp ′

4 For each gp ′, test its DFS encoding for canonicity
5 Compute σ (gp ′) (find data graphs gd aΩ gp ′)
6 If σ (gp ′)> ς , gp ′ is a frequent OGP, then recursively extend gp ′

7 end

Second, Tax-ON (for Taxogram with Ontology and Non-redundant output) untan-
gles topology extensions and label specialization differently (Algorithm 2). Loosely
following [7], it tackles them separately, in subsequent steps: (1) graph mining on suit-
ably re-labelled data graphs and (2) label refinements on each of the patterns found at
step (1). Thus, Tax-ON first mines F G, the most generic frequent graph patterns, using
plain gSpan. To that end, data graphs are cloned and then vertex/edge labels replaced
by the most generic super-entities in HC and HR, respectively. In step two, an extension
of Taxogram refines vertex labels. Thus, each OGP undergoes a sequence of individual
label specializations, i.e. substitutions of a class by a direct subclass, to go down HC.

To provide additional context, the pattern in Figure 3 is a 21-pattern within the
gSpan-OF’s pattern space (same as gSpan), while it can be obtained by refining a more
realistic 10-pattern belonging to F G with Tax-ON (striping out all white vertices).
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Algorithm 2: Tax-ON
Input: Ontology Ω , graph database D, minimal support threshold ς

Output: Set of frequent OGPs F Ω

1 Mine F G the set of frequent most-generic OGPs
2 Build D′ a copy of D, where vertex labels are replaced by their most generic class in C0 = roots(HC)
3 Mine frequent triples t ∈C0×R×C0 into F G

1 , the single-edge subset of F G over D′
4 Apply gSpan to discover all OGPs in F G, from all OGPs in F G

1
5 end
6 Mine all other frequent OGPs, from F G over D
7 Apply Taxogram to recursively label-refine OGPs in F G

8 Replace one vertex label by one of its direct descendants in HC to generate gp ′

9 Compute σ (gp ′) (same as in gSpan-OF), if gp ′ is a frequent OGP, then recursively label-refine gp ′

10 end
11 Eliminate duplicate OGPs using graph isomorphism checks
12 end

Fig. 4: Hierarchy-centered exploration vs Vertex-centered exploration.

4 Evaluation of the DO-powered pattern miners

We put both methods through some preliminary experiments. In practice, the main lim-
iting factor, shared by both, is the number of automorphisms in data graphs and pat-
terns. In gSpan, this slows down candidate generation, canonical check and support-
computing steps. Also, it creates a prohibitive number of embeddings of a candidate
pattern to the data graphs (up to 106 for one data graph). This prevents, in turn, the ef-
ficient pruning during candidate generation based on explicit embedding management.
That same issue prevents Taxogram from building a vertical database, which forces
expensive support counting over the graph database (via aΩ ).

Conceptually, the key point is that both methods forgo part of the available structure:
gSpan-OF ignores the hierarchies in the DO, while Tax-ON strips a pattern from its
graph information bringing it down to vertex sequence. Simply put, neither flattening
the conceptual hierarchy nor ignoring the graph topology is efficient enough in practice
to allow for an in-depth exploration of 〈Lp,vΩ 〉. On one hand, gSpan’s non-redundant
exploration is burdened by a large number of candidates induced by flat label sets since.
On the other, Taxogram’s loose refinement approach outputs lots of duplicate patterns.

Figure 4 compares gSpan’s vertex-centered exploration to Taxogram’s hierarchy-
centered one on their way to deal with an OGP gp and its two (isomorphic) specializa-
tions g′p and g′′p. On the left, Taxogram produces both g′p and g′′p from gp by refining
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&Lactation into &ShortLactation on positions 1 and 3, respectively. This exemplifies
a key shortage: By specializing all positions unrestrictedly, it allows for duplicates to
arise. In contrast, gSpan –through its canonical form-driven exploration– avoids either
g′p or g′′p since exactly one of them will comply to that form constraints. This capacity
is independent from the order on labels that underlies the canonical form, as shown on
the right of the figure (for additional details, see Figure 6 in Appendix).

Conversely, by traversing every subspace of 〈Lp,vΩ 〉 induced by a OGP topology
while following vΩ , Taxogram benefits from support anti-monotony. Thus, g′p and g′′p
will be tested only if gp proves frequent. For gSpan, though, gp, g′p, and g′′p are incom-
parable since located at the same (size-induced) level within its flattened pattern space.
Therefore, the status of any of the three OGPs is immaterial while testing the other two.

Fig. 5: Taxogram: number of patterns, duplicates and candidates for a 3-pattern.

Figure 5 clarifies the number of candidates Taxogram examines while testing all
possible specializations of a specific 3-pattern (left). Here, up to seven specializations
are required to reach a most specific pattern while the peak number of candidates is
generated at depths four and five below. The worrying aspect is among the ca. 100k
specializations tested, some 50% were duplicates (ratio increases with the pattern size).

A suitable canonical form is essential for the efficient exploration of 〈Lp,vΩ 〉. Yet
current forms such as gSpan’s are not designed to work with label specializations. A
critical property to guarantee for a refinement operator is the anti-monotonicity of the
canonical form: A canonical OGP code must only have canonical ancestors. The highly
irregular structure of 〈Lp,vΩ 〉 is a major challenge faced by such operators.

5 Conclusion

We presented here a first attempt at efficiently mining frequent generalized patterns
from an RDF dataset while using a DO as a generalization source. As the corresponding
DM task is beyond the reach of state-of-the-art methods, we designed two workaround
solutions: (1) pure graph pattern mining with a flattened set of labels and (2) graph
mining with only root class/property labels followed by recursive pattern specialization.

Having put them through experimental evaluation, we observed that both approaches
suffer on high computational overhead, most likely due to the highly combinatorial na-
ture of the resulting pattern spaces. This clearly warrants a more subtle blend of topol-
ogy extension and label refinement in a uniform descend in 〈Lp,vΩ 〉. Therefore, we
are currently investigating the design of a dedicated OGP miner exploiting a tailor-made
canonical form and support computing mechanisms.
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Appendix

Fig. 6: gSpan’s flattened exploration of Lp


