

Fea2Fea: Exploring Structural Feature Correlations via Graph Neural Networks Jiaqing Xie¹, Rex Ying² **ECML PKDD 2021**

Motivation

Introduction

Structural features are important features in a geometrical graph. Although there are some correlation analysis of features based on covariance, there is no relevant research on structural feature correlation analysis with graph neural networks. In our paper, we propose a framework based on GNN models for processing graph structural feature(s) to structural feature prediction, simply called Fea2Fea.

Main Findings:

- **Node degree** is correlated with other features such as **pagerank** and **clustering coefficient. Clustering coefficient** is correlated with **pagerank.** Features are correlated with themselves generally.
- The expressive power of the graph neural netowrk in achieving the correlations of graph features, such as the ease with which other structural features to predict **node degree** and general **difficulty** to predict **pagerank** and **average path length**.

Main Advantages:

- illustrate feature correlations with **low dimensionality**, where the number of input dimensions is controlled to a maximum of 5.
- require an **empirically effective** constructed models to perform comparisons which means that we introduce the importance of adding non-correlated features other than defeating the state of the arts graph embedding methods.
- filter additional redundant node features via graph neural network based models **instead of** covariance explained models.

¹School of Engineering & Informatics, University of Edinburgh ²SNAP Lab, School of Computer Science, Stanford University

Methods

Fea2Fea-single

Firstly we obtain a feature matrix Specifically, graph features have been indexed in order, which is given by constant feature, degree, clustering coefficient, pagerank and average path length. We extract two features each time, one for input and the other for output. We will reach a correlation matrix **R** since each feature can be taken both as input and output.

Fea2Fea-multiple

The value R(i, j) in the matrix R indicates whether feature f_i and Correlation Matrix R_g feature f_i can be easy or difficult to predict each other. Moreover, we want to add more features to f_i to see if it will predict f_i more accurately. Therefore, we apply a

Results

Table 1: Fea2Fea-single results (partial)

Task	Cora	Citeseer	PubMed	PROTEINS
Clu -> Deg	1.000	1.000	1.000	0.652
Deg-> PR	0.792	0.750	0.629	0.699
PR->AvgLen	0.421	0.466	0.459	0.172

Fea2Fea-single(GIN):

We figure out that **node degree** is the **easiest** to predict according to table 1. Predicting clustering coefficient and average path length is hard generally for both kinds of datasets.

Stanford **Computer Science**

threshold mechanism filter to irredundant structural features (above the each its

Fea2Fea-multiple:

When predicting clustering coefficient from other features, possible combination number of features is only equal to 2 or 3. A possible 3-set concatenation for Cora is {**Cons, PR, Avglen**}, which is much better than a 1-set prediction for each feature.

Table 2: Real world applications(%)						
Model	Enzymes	Proteins	NCI1			
GCN	36.0	66.2	61.3			
GAT	31.0	65.9	60.9			
Fea2Fea-s2	48.5	77.8	74.2			
Fea2Fea-b2	45.8	76.4	70.8			
Fea2Fea-n2	42.8	74.9	68.5			

With concatenating augmented structural features which are irredundant mutually in **tudatasets** with graph classification tasks, with original features, the accuracy is improved. NTN shows its powerfulness in some other tasks instead.

References

Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? Arxiv preprint arXiv:1810.00826 (2018)