# Web Image Context Extraction with Graph Neural Networks and Sentence Embeddings on the DOM tree

### Chen Dang, Hicham Randrianarivo, Raphaël Fournier-S'niehotta, Nicolas Audebert

This paper introduces a novel approach for Web Image Context Extraction (WICE) that combines Graph Neural Networks (GNNs) and Natural Language Processing models.

# Introduction

- ✤ Identifying the text in a webpage that best describes an image is a key step for efficiently indexing images in a search engine
- ✤ Visually rendering the webpage facilitates the extraction of an image's context, but isn't tractable on a large scale

# **Our Contribution**

✤ Use state-of-the-art language models to generate sentence embeddings for each text node in the DOM tree



- ✤ Use sentence embed- ✤ dings as node features to train a GNN, which can combine both structural and semantic information
- ✤ Use graphe models for large-scale processing of highly diverse news websites

# **Architecture**

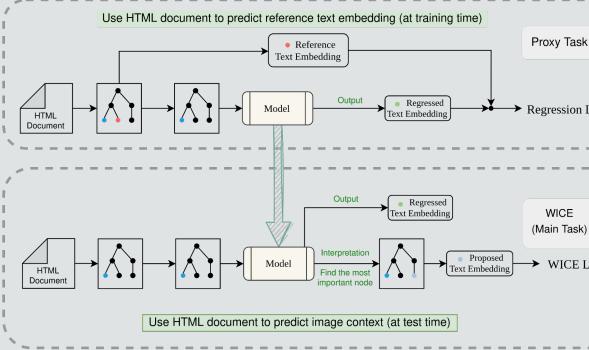


Fig 2: Our pipeline

- **Proxy task:** train a GNN model to predict the input document's reference text (red dot)
- Main task: interpret the trained model to choose the \* most predominant textual node (green dot) is then used as the context of the image

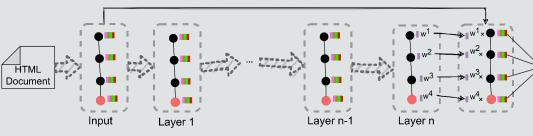


Fig 3: weight-GCN model architecture

Fig 1: An example of the WICE setting



# **Experiments**

|             | Method           | train | validation | test  |
|-------------|------------------|-------|------------|-------|
|             | random           | 0.78  | 0.779      | 0.779 |
| I<br>I<br>I | title            | 0.834 | 0.835      | 0.833 |
| 1           | text after image | 0.671 | 0.672      | 0.67  |
| 1           | wGCN             | 0.381 | 0.386      | 0.381 |
| -           | oracle           | 0.293 | 0.297      | 0.293 |

Table1: average cosine similarity loss between the context and the reference text [split dataset by webpages]

| 1 | Method           | train | validation | test  |
|---|------------------|-------|------------|-------|
|   | random           | 0.792 | 0.736      | 0.800 |
|   | title            | 0.834 | 0.861      | 0.814 |
|   | text after image | 0.701 | 0.571      | 0.705 |
|   | wGCN             | 0.415 | 0.404      | 0.441 |
|   | oracle           | 0.334 | 0.264      | 0.259 |

Table2: average cosine similarity loss between the context and the reference text [split dataset by websites]

Our model significantly outperforms WICE based on heuristics, and can work directly with HTML, making large-scale WICE tractable.

